REVIEW

of the doctoral dissertation by **Gylym Kairatovich Sapinov**

entitled "A Study on the Real-Time Spatial Localization of Seismic Events in Underground Mines",

submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in the educational program 8D07202 – Mining Engineering

No.	Criteria	Compliance with the criteria (please select one option)	Justification of the official reviewer's position
1.	The dissertation topic (as of the date of its approval) corresponds to the directions of scientific development and/or state programs	 1.1 Compliance with priority areas of scientific development or state programs: 1) The dissertation was carried out within the framework of a project funded by the state budget; 2) The dissertation was carried out within the framework of another state program (specify the name of the program); 3) The dissertation corresponds to a priority area of scientific development approved by the Higher Scientific and Technical Commission under the Government of the Republic of Kazakhstan (specify the area). 	The topic of the dissertation fully corresponds to one of the current priority areas of scientific development in the Republic of Kazakhstan for 2024–2026 — "Ecology, Environment, and Rational Use of Natural Resources," which includes goals related to safety and sustainable development of extractive industries and the rational use of natural resources. Specifically, the research contributes to: – Monitoring geoecological processes in underground environments; – Reducing risks during mineral extraction; – Implementing digital technologies to enhance the safety and environmental sustainability of the mining industry.
2.	Scientific significance	The work makes a substantial contribution to science, and its significance is well articulated	The dissertation makes a significant contribution to the development of geomechanics, applied seismology, and the safety of underground mining. The proposed approach to real-time seismic wave velocity prediction, accounting for the changing conditions of the rock mass, enhances the theoretical understanding of wave

			propagation and strengthens the foundation of seismic
			The importance of the research lies in increasing the accuracy
			The importance of the research lies in increasing the accuracy
			of event localization and its potential for preventing nazardous
			geodynamic phenomena in deep mines.
3.	Principle	of Level of independence:	I he dissertation demonstrates a high degree of the author's
	independence	1) High;	independence. The PhD candidate formulated the research
		2) Medium;	problem, developed the methodology, conducted laboratory
		3) Low;	and numerical studies, and implemented a machine learning
		4) No independence.	approach without external authorship or delegation.
			The structure of the dissertation, the consistency of the
			argument, and the concretence of scientific reasoning indicate
			hypothesis formation to validation of results. The quality and
			denth of the analysis confirm that the dissertation was
			completed independently
4.	Justification	4.1 Justification of the relevance of the	The dissertation addresses a highly relevant and timely
	of the	dissertation:	research problem. In the context of modern mining ensuring
	dissertation's	1) Justified:	accurate localization of seismic events is essential for
	relevance	2) Partially justified	operational safety and risk mitigation.
		3) Not justified	The author explores a topic that aligns with global trends in
		5) Not justified.	the digitalization of underground monitoring and geotechnical
			control. The research offers applicable solutions for real-time
			velocity modeling, which can be integrated into active seismic
			monitoring systems used in deep mines.
		4.2 The content of the dissertation reflec	ts The content of the dissertation fully corresponds to its title.
		the topic of the dissertation:	All sections of the work are focused on solving the problem of
		1) Reflects:	real-time spatial localization of seismic events in underground
		2) Partially reflects:	mining conditions.
		3) Does not reflect	The structure is logically built around this topic and includes
			theoretical justification, laboratory testing, numerical
			modeling, and the development of an adaptive algorithm. The
			coherence between the dissertation content and its title

		confirms the correctness of the chosen topic.
	4.3 The aim and objectives correspond to	The research objectives and tasks formulated in the
	the topic of the dissertation:	dissertation are directly aligned with the stated topic. Each task
	1) Correspond;	logically contributes to the overall aim of improving real-time
	2) Partially correspond;	localization of seismic events in underground environments.
	3) Do not correspond.	The dissertation clearly demonstrates how each objective is
		addressed through experimental work, modeling, or algorithm
		development. The consistency between the tasks and the
		achieved results confirms the internal logic and focus of the
	4.4 All gestions and propositions of the	Study. The structure of the discortation is locically consistent. Each
	4.4 All sections and propositions of the dissertation are logically interconnected:	abarter follows a clear sequence beginning with the
	1) Fully interconnected.	theoretical foundations and progressing through experimental
	2) Partially interconnected:	studies numerical simulations and the formulation of
	2) Not interconnected	conclusions
	5) Not interconnected.	The transition from one stage to another is justified and
		smooth The internal logic of the dissertation is preserved
		throughout, and no sections contradict or duplicate each other.
		This indicates a well-organized and methodically developed
		scientific work.
	4.5 The new solutions (principles, methods)	The dissertation introduces new scientific and
	proposed by the author are substantiated	methodological solutions. The proposed approach to adaptive
	and evaluated in comparison with known	modeling of seismic wave velocities differs significantly from
	solutions:	traditional static models by incorporating real-time changes in
	1) Critical analysis is present;	rock mass conditions.
	2) Partial analysis	The author compares the developed method with existing
	3) The analysis consists of quotations	approaches and highlights its advantages in terms of accuracy
	from other authors rather than original	and practical implementation. References to relevant scientific
	opinions.	literature support the originality of the proposed solution.
Principle of	5.1 Scientific results and propositions	The dissertation presents scientifically substantiated
Scientific Novelty		results, several of which are original and contribute to the

5.

1) New;	advancement of knowledge in the field. The author proposes a
2) Partially new (25–75% are new);	method for predicting seismic velocities using laboratory and
3) Not new (less than 25% are new).	The scientific provisions formulated in the work are logically derived and supported by experimental validation These results are applicable in real-time seismic monitoring systems and reflect a high level of methodological rigor.
5.2 Are the conclusions of the dissertatinew?	on The conclusions formulated in the dissertation are new and stem directly from the research results. They summarize the
1) New;	author's original contributions to the understanding of how
2) Partially new (25–75% are new);	seismic wave velocities are influenced by changes in rock mass conditions.
3) Not new (less than 25% are new).	The conclusions are not derived from existing literature but are based on independently obtained experimental and modeling data. They offer insights that can serve both theoretical advancement and practical application in underground seismic monitoring.
5.3 Are the technical, technologic	al, The dissertation offers new and well-substantiated technical
economic, or managerial solutions new a substantiated?	nd and methodological solutions. The author proposes an approach that combines laboratory testing, numerical
	simulation, and machine learning to construct adaptive
1) New;	velocity models for seismic monitoring.
2) Partially new (25–75% are new);	This integration of methods is innovative and addresses the limitations of static velocity models used in traditional
3) Not new (less than 25% are new).	systems. The proposed solutions are not only theoretically sound but also practically applicable in modern mine safety
	systems.

6. V	Validity of the Main Conclusions	All the main conclusions are / are not based on scientifically significant evidence or are sufficiently well substantiated (for qualitative research and disciplines in the arts and humanities).	The conclusions presented in the dissertation are valid and well supported by the research findings. They are based on a complete cycle of scientific investigation, including theoretical analysis, laboratory experiments, numerical modeling, and the use of machine learning. Each conclusion corresponds to the research tasks and is logically derived from empirical and computational data. The coherence between results and conclusions confirms the
			reliability and scientific integrity of the work.
7. K S I	Key Provisions Submitted for Defense	The following questions must be answered for each provision individually: 7.1 7.1 Is the provision proven? 1) Proven; 2) Rather proven; 3) Rather not proven; 4) Not proven. 7.2 Is the provision trivial? 1) Yes; 2) No. 7.3 Is the provision new? 1) Yes; 2) No. 7.4 Level of applicability: 1) Narrow; 2) Medium; 3) Broad. 7.5 Is the provision proven in a publication 1) Yes; 2) No.	Three provisions were submitted for defense.Responses regarding Provision 1:7.1 Proven 7.2Not trivial7.3New7.4Broad applicability7.5Proven in publicationResponses regarding Provision 2:7.1 Proven 7.2Not trivial7.3New7.4Broad applicability7.5Proven in publicationResponses regarding Provision 3:7.4Broad applicability7.5Proven in publicationResponses regarding Provision 3:7.1 Proven 7.2Not trivial7.3New7.4Medium applicability7.5Proven in publication

8.	Principle of	8.1 Reliability of sources and information	The methodology selected for the dissertation is well
	Reliability	provided	justified and clearly described. The research combines
			theoretical modeling, laboratory experiments, numerical
	Is the chosen	1) Yes;	simulations, and data-driven analysis using machine learning
	methodology	2) No.	techniques.
	substantiated or		Each stage is logically explained, with proper references to
	sufficiently		equipment, software, and analytical tools. The methodology
	described?		ensures transparency and reproducibility, making it adequate for
			solving the stated scientific problem.
		8.2 Were the results obtained using	The results of the dissertation were obtained using up-to-
		modern scientific research methods and	date scientific methods and modern digital tools. The research
		data processing and interpretation	involved advanced laboratory equipment, numerical
		techniques using computer technologies?	simulations using FLAC3D software, and data analysis
			supported by machine learning algorithms.
			This combination of physical modeling and computational
		1) Yes;	approaches reflects current standards in geomechanics and
		2) No.	ensures both precision and innovation in the conducted studies.
		8.3 Are theoretical conclusions, models	, The theoretical conclusions and identified patterns in the
		identified relationships, and patterns	dissertation are confirmed by experimental data. The author
		proven and confirmed by experimenta	conducted a series of controlled laboratory experiments to study
		studies?	how wave velocities vary with changes in the rock mass,
			including fracturing and filling conditions.
			The experimental results align with the theoretical
			assumptions and are further supported by numerical modeling.
			This cross-validation confirms the reliability of the conclusions.
		1) Yes;	
		2) No.	
		8.4 Are important statements confirmed	All key statements and theoretical propositions presented in
		partially confirmed / not confirmed by	the dissertation are supported by references to up-to-date and
		references to up-to-date and credible	credible sources. The work is based on an extensive body of
		scientific literature?	scientific literature, including more than 90 publications from
			international peer-reviewed journals. The author consistently

		8.5 Are the used sources of literature sufficient / insufficient for a literature review?	relies on modern scientific approaches, properly cites the sources reflecting the current state of the research problem, which demonstrates a thorough understanding of the subject and academic integrity. The literature used in the dissertation is sufficient for a comprehensive scientific review. The reference list includes fundamental works, recent publications from international databases (such as Scopus and Web of Science), and relevant research on seismic monitoring and geomechanics. This scope of sources reflects a deep understanding of the topic and allows the dissertation to be positioned within the context of modern scientific discourse.
9	Principle o Practical Value	 f 9.1 Does the dissertation have theoretica significance? 1) Yes; 2) No. 	I The dissertation offers clear theoretical significance by expanding the scientific understanding of how seismic wave velocities are affected by the evolving conditions of underground rock masses. It contributes to the development of adaptive modeling techniques in geomechanics and improves theoretical approaches to wave propagation analysis. These results strengthen the scientific basis of underground monitoring and
		 9.2 Does the dissertation have practical significance, and is there a high probability of applying the obtained results in practice? 1) Yes; 2) No. 	 can be used as a reference for future academic research. The dissertation demonstrates clear practical significance, with a high potential for industrial application. The developed approach to adaptive velocity modeling can be implemented in real-time seismic monitoring systems for underground mines. This will allow more accurate localization of seismic events and improve safety measures in mining operations. The research outcomes are relevant to both engineering practice and system design for geotechnical risk management.
		9.3 Are the practical proposals new?	The practical proposals presented in the dissertation are original and have not been previously applied in the context of

		1) Completely new;	underground seismic monitoring. The integration of laboratory
		2) Partially new (25–75% are new);	testing, numerical modeling, and machine learning for adaptive
			velocity estimation represents a novel technological approach.
		3) Not new (less than 25% are new).	These proposals offer real improvements to existing
			monitoring systems and can serve as a foundation for further
			development of intelligent safety technologies in the mining
			industry.
10.	Quality of	Academic writing quality	The academic writing quality of the dissertation is high.
	Writing and	1) High;	The text is coherent, well-structured, and written in a clear
	Formatting	2) Medium;	scientific style. Terminology is used correctly, and the
		3) Below average;	logical flow of arguments is preserved throughout the work.
		4) Low.	The language is concise and informative, and all parts
			of the dissertation are stylistically aligned. Formatting,
			grammar, and citation standards meet academic norms and
			contribute to the overall professionalism of the document.
11.	Remarks on the	no	
	dissertation		
12	The scientific level	The doctoral candidate's publications are	entirely aligned with the research topic
	of the doctoral		
	candidate's articles		
	on the research topic		
	(In the case of a		
	thesis defended in		
	the form of a series		
	of articles, the		
	official reviewers are		
	to comment on the		
	scientific level of		
	each article by the		
	doctoral candidate		
	on the research		
	topic.)		

Decision of the The dissertation by Gylym Kairatovich Sapinov, entitled "A Study on the Real-Time Spatial 13 Official Reviewer (in Localization of Seismic Events in Underground Mines", completed within the framework of the accordance with educational program 8D07202 – Mining Engineering, represents an independent and original scientific Clause 28 of the investigation addressing a highly relevant research problem. The study is grounded in a robust Standard methodological foundation, integrating theoretical analysis, experimental work, and numerical present Regulations) modeling. The dissertation exhibits clear scientific novelty, practical value, and a high standard of academic rigor. In accordance with the requirements of the Committee for Quality Assurance in Education and Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan, I recommend awarding Gylym Kairatovich Sapinov the degree of Doctor of Philosophy (PhD) in the educational program 8D07202 – Mining Engineering.

Reviewer Candidate of Technical Sciences, Associate Professor of the Department of Mining Satbayev University

