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Abstract 
 
This study examines the significant effects of anthropogenic seismic activity in 

underground mining on safety, productivity, and operational expenses. The precise 
identification of microseismic and rockburst source areas is essential for preventing 
unexpected occurrences like rockbursts. The existing constraints in forecasting the 
timing of these occurrences need an emphasis on likely locales. The study seeks to 
address this constraint by creating an approach that monitors and adjusts to alterations 
in ground conditions, offering a real-time solution for the selection of suitable velocity 
models in seismic monitoring systems. This approach aims to enhance the reliability 
of source location computations by accounting for the dynamic velocity model in 
underground mining environments, hence improving worker safety and mining 
productivity. The research acknowledges the changing properties of rock masses and 
voids during mining, emphasizing the insufficiency of a constant velocity model in 
source localization methods. This study utilized data produced from laboratory studies 
that simulated the continuously changing environment of underground mines. Analysis 
indicates that, because to the heterogeneity and ongoing fluctuations in the mining 
environment, seismic wave velocity cannot be regarded as a constant in source 
localization methods. Real-time prediction of seismic wave velocities markedly 
improves the precision of seismic event source localization. Dynamic numerical 
modeling in FLAC3D, utilizing laboratory data, was utilized to comprehend wave 
propagation and the underlying physics of the issue. Machine-learning techniques, such 
as Linear Regression models utilizing laboratory data and Deep Artificial Neural 
Networks for enhanced accuracy, were employed to forecast seismic wave velocities 
under diverse scenarios. 
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ML 
MS 
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PDT                      Peak definition time 
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RMR                          Rock mass rating 
RQD                     Rock quality designation 
SCA                            Static cracking agent 
UCS Uniaxial compressive strength 
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1. INTRODUCTION  
 
1.1. Background 

 
Seismicity is the natural occurrence of earthquake activity or the produced 

vibrations of the earth resulting from anthropogenic activities. This study examines 
seismicity in underground mining resulting from anthropogenic activity. A seismic 
event is defined as the abrupt release of energy from the rock mass or crust, generating 
a series of seismic waves that propagate through the rock mass or crust. In mining, 
seismic activity that results in damage to an excavation, machinery, or personnel injury 
is termed a rockburst. Phenomena like rockburst and seismicity can significantly affect 
mine operations regarding safety, productivity, and operational expenses. Nonetheless, 
despite advancements in technology, forecasting the timing of rockbursts remains 
contentious and subject to debate within the mining sector and rock engineering. [3] 
assert that predicting the timing of rockbursts is challenging, and the sole approach to 
address this issue is to identify potential rockburst zones by numerical modeling and 
empirical knowledge. Recent technology advancements have rendered microseismic 
monitoring systems highly prevalent, particularly in the mining sector, especially for 
deep underground mining endeavors. The microseismic monitoring system facilitates 
the observation of mining-induced seismicity to assess probable seismic hazard 
sources. This tool is crucial for managing seismic risk regarding the exposure of 
infrastructure and personnel to its effects. The microseismic monitoring system is 
essential for comprehending the rockburst mechanism, as it can detect and identify 
mine seismic zones. The precision and forecasting of event source locations in the 
microseismic monitoring system are contingent upon the input velocity. Regularly 
updating input velocity models in seismic monitoring systems is time-consuming and 
may lead to inconsistent source locations during the intervals between 
updates.Contemporary technologies are unable to accurately determine the site or 
predict the timing of a rockburst. Given that underground mine seismicity greatly 
impacts workers safety and mine production, identifying potential solutions for precise 
seismic event source localization is essential for alleviating rockburst consequences. 

The subterranean mining environment is difficult to regulate, whereas the 
laboratory provides an ideal controlled setting for simulating and examining seismicity. 
This study employs discrete physical modeling. Instead of depending on a single block 
that undergoes alterations to accommodate the fluctuating ground conditions in mining 
locations (a labor-intensive method), we employed individual blocks. Each block 
denoted a distinct phase in the mining process concerning time, structure, and 
geometry.  This chapter outlines the imperative to enhance existing velocity models in 
seismic monitoring systems, delineates the research topic, articulates the study aims, 
underscores the significance of the findings for industry and science, and gives the 
thesis framework. 
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1.2. Problem definition 

Recent research has revealed that wave velocities in rock masses during deep 
mining are variable, contrary to the common assumption in seismic monitoring 
systems' source location algorithms. Rock masses in mining areas are perpetually 
deteriorated due to mining activities.  Stresses caused by blasting and excavation cause 
fracturing of the rock bulk. Water's presence expedites weathering and erosion 
processes. Consequently, the application of 3D velocity models utilizing 3D ray tracing 
in heterogeneous medium, which can account for voids resulting from mining 
operations, is currently under active investigation [72]. This method shown 
enhancements in the precision of seismic event source localization. Seismic wave 
velocity alterations result not only from the formation of voids but also from various 
other factors contributing to rock mass degradation, such as stress-induced fracturing 
and the dynamic characteristics of the voids, including their size, shape, and content 
(i.e., type of backfilling or absence thereof). In contemporary accounting practices for 
voids in seismic wave velocities, the velocities in seismic monitoring systems are 
frequently revised utilizing development bursts or weight drops. Due to the 
continuously changing conditions of the rock mass in mining, real-time velocity 
variations must be anticipated and incorporated into the seismic monitoring systems' 
source location calculation algorithm. The event sources situated in perpetually 
fluctuating ground conditions between velocity updates will lack reliability. 
Furthermore, while regular velocity upgrades may enhance the circumstances, their 
implementation is both arduous and expensive.  

 
 
1.3. Research objectives 
 
The main objective of the project is to develop novel techniques for monitoring 

variations in velocity resulting from the constant deterioration of ground conditions 
caused by mining operations in subterranean environments. The objective is to forecast 
the optimal velocity model in real-time for application in seismic source localization 
computations within seismic monitoring systems. 

The specific research aims are to:  
1) Simulate varying rock mass characteristics in mining sites utilizing rock samples 

with diverse parameters, including perforations, open voids, and fluctuations in backfill 
and fracture conditions. 

2) Simulate the impacts of mining-induced fracturing by deliberately fracturing 
rock blocks with both filled and unfilled gaps to analyze the influence of fractures and 
rock mass quality on seismic wave velocity. 

3) Comprehend the sensitivity of seismic wave velocity to diverse circumstances 
inside the subterranean mining context. Perform dynamic 3D numerical modeling 
using FLAC3D to simulate and assess velocity variations inside the rock mass under 
different situations. 
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4) Utilize machine learning (ML) to ascertain seismic wave velocity under diverse 
underground mining settings for the real-time identification of seismic event source 
sites. 

1.4. Scope of the research 
 
The research is aimed at investigating underground mining conditions in a 

controlled laboratory environment backed with numerical modelling to understand the 
effect of continuously changing mining environment on seismic wave velocity and its 
impact on the accuracy of seismic source locations. Since the rockburst is site-specific, 
it depends on the strength of the rock mass, in situ stress state, mining method, the 
shape of the opening, and geology. This fact complicates the creation of a general 
solution for the purpose of accurate estimation of rockburst source location.  Therefore, 
the outcome of the study should be considered as a procedure for accurate seismic event 
source location in any type of underground mine. It can be achieved by correlating rock 
mass quality and velocity as in [4].  To understand a rather complex problem, dynamic 
numerical modelling of seismic events, together with laboratory tests, gave a strong 
basis for the development of the 3D velocity model to improve the accuracy of seismic 
source location. Input parameters for the modelling were provided through laboratory 
tests that mimicked the continuously changing mining environment. The study did not 
account confining stresses. This aspect is planned for future study. 

 
 
1.5. Significance of the research 
 
Rockbursts in deep underground mines necessitate significant attention and 

presently represent a major difficulty in rock engineering and mining science (Wagner 
2019). Significant judgments regarding seismicity are determined through the 
observation of seismic activities. 

The importance of the research findings to the mining sector and scientific 
community is as follows:  

- Precise seismic source coordinates  
- Substantial enhancement of mine safety  
- Decrease in downtimes attributable to rockbursts o Augmented mine 

productivity  
- Precise monitoring of cave propagation in block caving mining and accurate 

observation of fracture growth and propagation in hydraulic fracturing  
Predicting stress changes based on rock mass response will enhance understanding 

in the field of rock research. 
The precise identification of areas with elevated seismic risks is essential for 

efficient seismic monitoring systems. This would facilitate the prevention of fatalities 
and production delays by ensuring the safe evacuation of equipment and personnel 
prior to a rockburst and enabling secure re-entry following seismic events.  
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1.6. Approach  

To accomplish the research objective, the subsequent tasks must be executed:  
1. Simulating the mining environment in the laboratory  
a. Replicate the varying conditions of the rock mass in the mining environment: 
▪ Preparation of uniform cubic rock/concrete specimens from granite and concrete 

of varying dimensions and borehole diameters, symbolizing the progressive maturation 
of the mine over time, where larger sample sizes indicate greater mine development 
and larger hole diameters reflect an escalating extraction ratio over time. 

▪ Infilling voids in rock/concrete specimens with various compositions: void, 0% 
cement (100% dry sand), 0% cement (water-saturated sand), 5% cement, 10% cement, 
15% cement, and 20% cement cured for durations ranging from 8 hours to 28 days. 

▪ The fragmentation of the blocks to record stress-induced damage resulting from 
mining. 

- A static cracking agent is utilized in boreholes to fracture blocks, allowing for the 
observation of fracturing and backfill effects on seismic wave velocity. 

- The cracks will be correlated with corresponding degrees of fracturing in the 
quality of rock blocks (rock mass quality). 

b. Measurement of wave velocity in rock blocks under the various conditions 
outlined above utilizing the SAEU3H AE system. Wave velocities will be ascertained 
for each rock condition specified in item 1a above. 

c. Identification of numerical modeling input parameters and validation of concrete 
block properties. 

▪ Mechanical characteristics of granite and concrete blocks 
▪ Temporal features of mechanical backfill (uncemented and cemented sand fill) 
2. Utilization of 3D dynamic numerical modeling via FLAC3D to comprehend the 

physics of event source location issues and to corroborate laboratory testing outcomes. 
3. Utilization of Machine Learning methodologies for real-time prediction of 

seismic wave velocity based on specific ground conditions, intended for integration 
into seismic monitoring system algorithms for source localization. 

 
 
1.7. Thesis Outline 

This dissertation is structured into seven chapters. This document first examines 
mining-induced seismicity, followed by a detailed exploration of each chapter's 
specific research objective as outlined below:  

Chapter 1 – Introduction: This chapter offers context for the issue, emphasizes the 
importance of enhancing the precision of mining-induced rockburst prediction 
techniques, and outlines the significance, objectives, methodology, and scope of the 
research. 

• Chapter 2 - Review of Literature: 
This chapter examines the contemporary advancements in rockburst prediction and 

mitigation. This document addresses microseismic monitoring systems and its 
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constraints, along with the influence of the input velocity model on the localization of 
seismic event sources. 

Chapter 3 – Methodology: This chapter delineates the techniques utilized to fulfill 
the principal objective of precisely determining the seismic source location. These 
methodologies include laboratory experiments, numerical modeling, and machine 
learning. 

Chapter 4 – Laboratory Experiments on Discrete Physical Models Simulating Mine 
Environments: This chapter delineates the laboratory configuration, encompassing the 
materials and apparatus employed to replicate continuous rock mass deterioration in 
subterranean mines, and presents the findings from laboratory tests utilizing Acoustic 
Emission (AE) technology. The document delineates the methodology for velocity 
computation, examines the effects of ongoing rock mass deterioration on seismic wave 
velocity, elucidates the Rock Mass Rating (RMR) calculation process, and specifies 
the ultimate database employed for numerical modeling and machine learning. 

Chapter 5 – Dynamic Numerical Modeling: This chapter delineates the numerical 
modeling process, commencing with model building and concluding with the reporting 
of sensitivity and parametric analysis results. 

• Chapter 6 - Machine Learning: This chapter delineates machine learning 
methodologies utilized for velocity forecasting and event source localization.  

• Chapter 7 - Conclusions and Recommendations: This chapter encapsulates the 
findings and offers recommendations derived from the performed research. 
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2. LITERATURE REVIEW  
 
2.1. Mining-induced Seismicity  
 
As natural resource output escalates and reserves diminish, underground mines are 

being excavated to greater depths globally [23]. Additionally, geotechnical engineering 
projects, including tunnels and subterranean laboratories, are situated in profound 
formations characterized by complex geology and ground conditions [32, 86]. Elevated 
in situ stresses combined with intricate geology lead to several hazards, including 
rockbursts, rock mass caving, and excavation deformations [21, 60, 66, 88, 79]. 
Rockburst is characterized as a quick and strong seismic occurrence triggered by 
excavation that results in damage to the excavation[38]. Rockburst is categorized as 
one of the most perilous geological phenomena in underground mining due to its 
tremendous intensity and sudden occurrence. It inflicts harm on excavations, 
machinery, and personnel. Rockbursts can be classified into three categories according 
to their source mechanisms: strainburst, pillar burst, and fault-slip burst [8, 28]. The 
predominant kind of rockburst in subterranean mines is strainburst [8]. Strainburst 
occurs due to tangential stress from excavation, leading to violent and unstable rock 
failure [37, 8]. Pillar burst refers to the rapid failure of an isolated pillar or a segment 
thereof, occasionally leading to the fragmentation and ejection of rock debris from the 
pillar [27].  It transpires when the accumulated elastic strain energy reaches a critical 
threshold, at which point the released energy exceeds the wasted energy.  A substantial 
quantity of failed rocks is expelled, and the magnitude typically exceeds that of a 
strainburst [38]. Most rockburst research concentrates on causes, risk assessment, 
prediction, prevention, and mitigation. Methodologies for studying rockbursts can be 
categorized into five types: empirical, analytical, experimental, data-driven, and 
numerical. [49, 11] assert that an effective method for controlling rockbursts has not 
yet been established, owing to their complexity and the myriad components involved, 
such as geological conditions, in situ stresses, induced stresses, and mining operations 
that serve as triggering conditions [24]. Nonetheless, the issue of rockburst can be 
addressed in two ways. Initially, by mitigating the damage inflicted by seismic activity, 
and subsequently by regulating the position, timing, and amplitude of the seismic 
event. In the event of many exhibits and significant seismic occurrences, backup 
mechanisms failed to avert damage to mines. If the risk of injury is significant and 
cannot be mitigated just by a support system, then it is necessary to monitor the 
location, timing, and severity of the event. The strategic approach to rockburst 
management involves monitoring the location, timing, and amplitude of rockbursts to 
mitigate their effects. Certain forms of rockbursts are attributed to mining sequence, 
excavation shape, or a combination of these elements with geological features. The 
strategic approach involves altering the mining sequence, stoping sequence, and, in 
some instances, the initial mine design[38]. Recently, a comprehensive strategy that 
incorporates tele-remote mining, improved ground support, advanced support systems, 
and reduced exposure for workers and equipment through seismic monitoring has 
proven to be more beneficial than the isolated implementation of any individual 
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component [73].The likelihood of rockburst occurrence is assessed based on the 
seismic history of the specific mine and comparable mines. Mining-induced seismicity 
hazards are categorized into two types: rockburst danger and seismic hazard. The 
former denotes the likelihood of a seismic event causing harm, whereas the latter 
signifies the chance of the occurrence of a seismic event. Not all earthquake activity 
lead to damage. From a geomechanical standpoint, the primary seismic hazards can be 
categorized as follows:  

1. Microseismic Density: Microseismic activity indicates rock mass deterioration 
that may result in ground collapse. Damage resulting from microseismic density is 
categorized as a permanent hazard due to its irreversible nature.  

2. Seismically Active Faults: The existence and number of active faults indicate the 
hazard level. Seismically active zones correspond to a short- to medium-term risk.  

Major seismic events can be induced by an active fault plane. 
b. The presence of two or more active tectonic planes exacerbates the risk of ground 

hazards. 
c. Local rockbursts are induced by gravitational forces and the release of seismic 

energy, posing possible risks to crew safety, mining excavations, and equipment. 
3. Dynamic Stress Loading: significant seismic occurrences, such as rockbursts, 

cause substantial excavation damage by generating dynamic stress loading.  The 
associated danger is categorized as a short-term hazard [48].  

The analysis of rockburst case studies reveals that the adverse impacts of rockbursts 
are often localized and inconsistent. The extent of damage sustained in an excavation 
from a rockburst varies by location. The limited nature of rockburst damage arises from 
complex mechanisms associated with rockburst occurrences and the interplay of 
multiple contributing elements. Although various elements influencing rockburst 
damage have been identified, the specific conditions that initiate rockburst events in a 
complex subsurface ecosystem remain unclear [50, 11]. 

 
 
2.2. Rockburst managing methods  
 
Researchers worldwide have invested significant efforts in understanding rockburst 

causes, prediction approaches, and preventative methods to mitigate seismic activity in 
mining operations [90]. An essential element in preventing and alleviating rockburst 
disasters is the establishment of precise monitoring and early warning systems.  

Currently, monitoring and early warning techniques for rockbursts can be classified 
into two main categories: conventional rock mechanics methods (such as the drill 
cuttings method and coal-rock mass deformation measurement method) and 
geophysical methods (including microseismic monitoring, acoustic emission, and 
electromagnetic radiation monitoring methods) [65]. 

 
2.2.1. Microseismic monitoring systems 
2.2.1.1. Predictive methods 
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Geophysical methods, especially the microseismic monitoring system, have 
become prevalent in deep mines due to their non-invasive characteristics, continuous 
data collection, and automated monitoring functions. The microseismic monitoring 
system has demonstrated efficacy in evaluating rockburst dangers by detecting 
vibration wave signals generated from roof failures or rock mass cracks. The 
microseismic monitoring system assists in assessing the displacement and fracture 
condition of the rock mass by monitoring and issuing alerts about potential rockburst 
threats. The system delineates areas of stress-induced fracture related to mining 
operations. The microseismic monitoring system is crucial for facilitating a rapid 
response to anomalous activities, including high-magnitude occurrences. Delivering a 
prompt and dependable identification of seismic occurrences is a fundamental 
responsibility of mine seismicity surveillance. The determination of the seismic event 
source location involves two steps: first, the computation of propagation time, and 
second, the inverse technique. 

At mining sites, numerous derived indices, including energy level, occurrence 
frequency, primary frequency of vibration waves, and fractal dimension, are routinely 
employed to assess the current hazard condition. [87] examined the functional 
correlation between MS energy and rock damage by the application of traditional 
Benioff strain theory. Consequently, they introduced an innovative criterion for 
forecasting rockburst occurrences based on the timing of their manifestation. [45] 
utilized the wavelet packet transform technique to examine the complex waveforms of 
MS occurrences. Their studies revealed a downward shift phenomenon in the energy 
distribution of frequency bands, which may act as an early warning indicator for 
rockburst events. [84] emphasized the anomalous alterations in source parameters of 
MS tremors, including MS event density, seismic energy density, cumulative volume, 
energy index, and b-values, as significant indicators for detecting possible rockburst 
occurrences. [54] examined microseismic events that occurred prior to or during roof 
collapses and surface detonations, employing Fractal Dimension and b-value 
methodologies. Their findings demonstrated that these two characteristics aided in 
identifying precursor signatures for the spatial-temporal prediction of rockburst events. 
[82] introduced various statistical metrics, such as cumulative apparent volume, energy 
index, and cumulative released energy, and examined their correlation with rockburst 
occurrences. Their approach offered a significant reference for rockburst forecasting. 
[22] proposed a fractal computation technique to analyze the self-similarity of energy 
distribution in MS events during the initial stages of rockburst development. The daily 
energy fractal dimension of MS events was noted to rise as an immediate rockburst 
approached, providing a framework to limit the risk of such occurrences during the 
excavation of deep, hard-rock tunnels. Furthermore, the utilization of the MS system 
in rockburst monitoring has a lengthy history, leading to a significant collection of 
monitoring data over time. This data has established the foundation for the 
implementation of artificial intelligence (AI) algorithms in predicting rockburst 
hazards and their location. Recently, various researchers have effectively utilized 
decision trees, Bayesian networks, logistic regression, neural networks, and other 
methodologies to forecast rockburst occurrences, demonstrating practical applications 
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in mining locations [83]. However, the aforementioned warning indications may 
produce varying results for the same event because of their unique principles in 
representing the development of rockburst precursors. This discrepancy may hinder the 
precise evaluation of hazard conditions by mining personnel. Furthermore, the 
forecasting of rockbursts exhibits a significant class imbalance problem, constraining 
the practical efficacy of machine learning techniques and frequently resulting in 
overfitting occurrences. Therefore, effectively preventing and controlling rockbursts in 
the field through the analysis of MS warning indications from a time series viewpoint 
is difficult.  

 
2.2.1.2. Velocity model for microseismic monitoring systems 
The capacity to observe a 3D volume utilizing a distribution of 3D sensors 

constitutes an optimal arrangement that will provide the most precise source location 
and parameters. Nonetheless, the distribution of 1D (linear) and 2D (planar) sensors 
can yield dependable data and may serve as a microseismic array. The installation of 
triaxial sensors is essential for linear or planar sensor distribution to prevent non-
uniqueness.   

The chosen velocity model for the rock mass is a critical determinant of the 
precision of seismic event localization. A singular velocity model is predicated on the 
premise that the entire volume possesses uniform elastic characteristics, rendering it 
isotropic and homogenous, with identifiable source locations such as blast holes or 
areas of significant impact. Nonetheless, the majority of mines continue to employ a 
singular velocity model for microseismic monitoring. Two-dimensional models 
employ many parallel layers that may exhibit anisotropy or be isotropic. The most 
organized velocity model is a three-dimensional model with six horizontal layers and 
the three-dimensional configuration of voids and caverns. The mining environment is 
complex due to geological formations, natural voids, and excavation operations. 
Consequently, the 3D velocity model serves as an effective method for integrating 
layers, voids, and blocks. The homogenous velocity model is unsuitable for seismic 
monitoring in mining environments because of the constantly changing conditions. A 
comprehensive 3D velocity model can be developed. The 3D velocity model can be 
constructed via ray-tracing or wave front reconstruction [72]. Nonetheless, ray tracing 
encounters constraints during execution, one of which being a significant rise in 
velocity within the medium. Consequently, ray tracing is applicable solely to a limited 
set of velocity models and is more effectively managed by numerical modeling. [72] 
introduced an enhanced Fast Marching Method (FMM) algorithm for wavefront 
reconstruction. The approach evaluates transit time and velocity, utilizing a 3D model 
constructed from existing geological and structural data; this method computes variable 
velocity models via wavefront reconstruction. The algorithm is tailored for low-
velocity volumes, specifically caves or excavated stopes. The standard FMM offers 
both rapidity and precision for obtaining practical outcomes; nonetheless, the technique 
necessitates the simulation of the initial arriving wavefront. 

The three-dimensional allocation of sensors is an ideal configuration that typically 
results in enhanced accuracy in determining source locations.  Isolines change when 
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traversing horizontal layers and cave zones, leading to reduced velocity. The analysis 
of the seismic mechanism is typically performed by moment tensor calculations 
without the aforementioned assumptions. An study devoid of assumptions establishes 
the foundation for identifying probable failures. 

Seismic moment tensor inversion is the technique employed to utilize a three-
dimensional velocity model. It necessitates the orientation of seismic energy towards 
the sensor and an adjustment of amplitude based on distance.  The integration of the 
moment tensor inversion technique with a three-dimensional velocity model will yield 
more precise input data. Source mechanism analysis is conducted to enhance 
comprehension of the failure mechanics associated with the positioning of rock 
fractures. 

 
2.2.2. Spatial-temporal prediction method 
Recently, researchers have suggested rockburst warning approaches utilizing a 

"spatial-temporal integration" approach [11], [10] advocated for the application of 
active and passive seismic tomography to illustrate geological discontinuities in linear 
pictures, facilitating the evaluation of stress redistribution and the identification of 
high-seismicity areas for rockburst hazard assessment. [44] identified sharp-rise-sharp-
drop fluctuations in total daily energy, event count, energy deviation (≥20), and event 
count deviation (≥1) as temporal antecedents for high-energy earthquakes. They 
devised a spatial-temporal integrated early warning technique for rockbursts by 
combining temporal indicators with the spatial evolution patterns of the high-energy 
density index of MS (EDIM), velocity, and velocity anomaly zones. [10] devised a 
spatial-temporal forecast approach for rockbursts by employing multidimensional data 
from MS monitoring and creating contour maps for each indicator. [75] utilized 
temporal and spatial distribution graphs of tremors, in conjunction with energy density 
cloud pictures, to pinpoint high-stress areas. 

Notwithstanding significant advancements in rockburst early warning techniques, 
the majority of methods depend on qualitative descriptions, such as the continual 
increase of indicators or evaluations of whether indications surpass key thresholds. 
These systems rely on human assessment of indicator trends or are constrained by 
fluctuating critical values resulting from the intricate conditions of mining operations, 
impeding their widespread use. Moreover, anticipating rockbursts from a spatial 
viewpoint predominantly involves intricate modeling and computations, complicating 
the fulfillment of timely and precise warning requirements at mining sites. 

Comprehensive laboratory studies and field observations have shown that 
rockbursts exhibit a nonlinear developmental trajectory [44]. The poor comprehension 
of the fundamental mechanics behind rockbursts complicates the identification of a 
singular measurement indicator that comprehensively represents the entire evolution 
process of rockbursts. Rockbursts, however, arise from stress-induced damage to coal-
rock formations, marked by the internal initiation, propagation, convergence, and 
connection of fractures, finally resulting in the formation of massive fissures. The 
energy emitted during this process disseminates outward as vibrational waves, 
electromagnetic signals, and various other forms. Thus, metrics that measure the 
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attributes of energy release signals across different dimensions (such as MS energy, 
frequency, etc.) likewise demonstrate variations. An exhaustive examination of these 
evolving patterns is essential for identifying aberrant trends before significant coal-
rock damage occurs, acting as a pivotal element in rockburst warning systems. 
Moreover, the proper identification and quantification of spatial differences in warning 
indicators at specific locales are crucial for the effective prevention and control of 
rockbursts. 

 
2.2.3. Support and Backfill 
Enhanced support is a mechanism designed to mitigate damage resulting from 

seismic activity. In conjunction with the type of support system, it is crucial to choose 
the appropriate timing and place for support installation. Enhanced support is an 
integrated support system comprising cone bolts, mesh, shotcrete arches, or zero-gauge 
straps. The integration of these two support systems has proven effective in burst-prone 
environments and areas adjacent to seismically active geological formations. Enhanced 
assistance is more efficacious when implemented during the initial development phase, 
as postponement results in compounded difficulties over time due to elevated in-situ 
tensions [48]. The release of seismic energy is a dynamic and variable process. The 
majority of the mining area will remain unaffected; hence, the construction of support 
across all mining areas is not pertinent due to its exorbitant cost.  A seismic hazard map 
serves as a strategic tool for identifying locations for the construction of increased 
support to ensure ground stability. Furthermore, it facilitates the further planning of 
mine growth by establishing infrastructure in safer locations or by implementing a 
more robust support system. Nevertheless, such support systems are expensive and 
cannot be implemented during the entire mine development [48]. Evaluating the 
potential for rockburst damage in a specific section of the mine is essential for 
predicting the time and positioning of the support system.  

Backfill constitutes an alternative form of ground support, and various types of 
backfill significantly influence the rock mass's response to mining operations. 
Nonetheless, backfill is region-specific, and substituting the backfill system with an 
alternative is a costly and protracted endeavor. Backfilling may mitigate rockburst 
damage solely in instances of relatively thin, tabular orebodies; however, in vast and 
more widespread orebodies, the impact of backfilling is minimal. The primary cause is 
material porosity, as it is unfeasible to introduce backfill with sufficient density to 
counteract convergence in orebodies of substantial thickness [38]. The potential energy 
in the orebody walls arises from the convergence of walls following mining operations.  
The energy source responsible for rockbursts is the potential energy within the walls. 
A portion of the energy released as seismicity is classified as a rockburst or seismic 
activity if it results in damage. Backfill can be utilized to diminish the discharged 
energy by absorbing a portion of the potential energy within the orebody walls. The 
intensity of the rockburst will diminish due to the altered energy equilibrium. A portion 
of the energy released during mining activities is retained in the pillars and walls, 
another portion is absorbed by backfill, and the remainder is discharged. The emitted 
energy is utilized in the fracturing of rock mass as seismic energy. Multiple factors 
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regulate the energy of the wall rocks and the energy released. The primary elements 
are depth, stress level, stope span, and wall rock modulus. The energy quantity is 
related to the square of the depth (stress). It indicates that as load escalates, the stiffness 
of the wall rock must be augmented, and the stope span must be reduced [38]. 

 
 
2.3. Simplex Method 
 
The simplex technique, first introduced by [58] as an optimization tool for 

minimizing functions, has achieved broad adoption in numerous scientific and 
technical fields. [53] enhance the discussion on optimization techniques, highlighting 
the effectiveness and versatility of the simplex method. Its capability in addressing 
complex, non-linear issues makes it a viable option for applications like seismic event 
source localization. 

The computing efficiency of the simplex method is crucial in the real-time analysis 
of seismic event source location. [2] broaden the discussion to the utilization of 
optimization techniques, such as the simplex method, in addressing inverse problems 
in seismic monitoring. The intrinsic difficulties of these inverse problems, arising from 
uncertainty in velocity forecasts and sensor data, highlight the need for effective 
optimization methods. [70] presents a stochastic search and optimization framework to 
tackle the issues associated with uncertainty in seismic monitoring. This stochastic 
method improves the applicability of the simplex technique, especially in situations 
characterized by uncertainty in velocity forecasts and sensor data.  

[71] explore the many uses of optimization techniques, including the simplex 
approach, within control theory. This literature, although not primarily focused on 
seismic monitoring, offers valuable insights into possible synergies with the subject, 
offering a comprehensive viewpoint on optimization applications. 

In conclusion, the simplex technique proves to be a powerful and adaptable 
optimization instrument in the localization of seismic event sources. Its adaptability to 
diverse geological circumstances, capacity to manage uncertainties, and computational 
efficiency render it a valuable asset in the advancement of seismic monitoring systems. 
Continued research efforts are essential for enhancing and broadening the application 
of the simplex approach, tackling complex difficulties. 

 
 
2.4. Numerical Modelling  
 
Numerical modeling is a mathematical representation of a physical or other 

behavior founded on relevant hypotheses and simplifying assumptions [69]. According 
to [34, 35] , numerical modeling techniques in rock mechanics can be categorized into 
continuum, discontinuum, and hybrid methods.  

Over the past 50 years, substantial breakthroughs have been achieved in numerical 
modeling to replicate physical processes in rock mechanics and rock engineering at 
several scales, owing to the swift progress in computer technology and software. The 
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numerical modeling method offers advantages such as cost-effectiveness, safety, time 
efficiency, and flexibility in comparison to alternative approaches like physical 
simulation and field testing. It may additionally provide further information. 

[67] assert that numerical modeling may be beneficial for many facets of the 
rockburst issue, encompassing the correlation between mining operations and the 
resultant seismicity, the source mechanism, and the effects of seismic waves on mining 
excavations. Numerical simulation techniques have been extensively employed to 
investigate the reasons of rock mass failure and the mechanical behavior of intricate 
rock masses. The simulation results, including seismic locations, magnitudes, and 
mechanisms derived from the numerical model, when compared with field seismic 
data, enhance confidence that the FDM/DEM coupled model operates realistically, 
despite being a considerable simplification of reality. The precise forecasting of 
rockburst occurrence is highly intricate due to the stochastic nature and intricacy of the 
rockburst mechanism [64, 90]. The incidence of rockbursts is predominantly 
influenced by alterations in ground tension resulting from excavation activities. 
Technologies for geological surveys, ground stress detection, rock mechanics theories 
and methodologies, along with advancements in long-term numerical simulations, have 
facilitated both qualitative and quantitative predictions regarding the location and 
strength of rockbursts [64]. Researchers assert that the era of quantitative rockburst 
prediction has commenced, necessitating a synthesis of numerical simulation and field 
observation [9]. 

Numerical modeling is the most effective method for assessing the reaction of rock 
masses to various mining systems and sequences. Furthermore, challenges associated 
with the sequencing and mining systems are highly intricate and difficult to modify. 
Numerical modeling is the appropriate method for evaluating mining tactics to mitigate 
the rate of energy release from the system.  

Numerical models can quantify stress-strain variations induced by extensive 
mining activities in the absence of geotechnical monitoring [76]. Developed numerical 
models may indicate optimal access locations and appropriate stope sequencing. The 
process by which rock mass responds to mining, resulting in seismic energy release 
and potential damage to excavations, is intricate and not yet fully comprehended. 
Consequently, laboratory tests conducted in a controlled setting are a suitable approach 
for the research of seismicity.  

The factors governing seismic activity in the mine differ from those influencing the 
extent of damage resulting from seismicity.  Elevated stress is not the sole determinant 
of seismicity; hence, not all regions under significant stress induce rockbursts. A 
significant association exists between locations experiencing a substantial decrease in 
stored energy and seismically active areas. An analysis comprising three components 
is required to evaluate the potential energy release associated with mining operations. 
The principal elements of the analysis include: - Stress analysis - Energy analysis - 
Loading system analysis. 

Multiple criteria must be fulfilled for the seismic energy release from the rock 
mass:  

a) Applied stresses must exceed the strength of the rock mass.  
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b) A significant volume of energy must be stored and subsequently released.  
c) Energy release must occur within a brief timeframe to trigger the dynamic, non-

linear reaction of the rock mass.  
Consequently, simulating mining operations using a tripartite analysis is essential 

for evaluating potential damage induced by seismic activity [38].   
 
 
2.5.  Summary  
 
Rockburst incidents substantially affect personnel safety and mining productivity. 

Preventing such situations is seen preferable to addressing their repercussions. Recent 
studies demonstrate that microseismic monitoring devices are essential in deep 
underground mines, facilitating the characterization of mining-induced seismicity for 
a thorough assessment of seismic hazards. These monitoring systems are essential for 
reducing personnel and equipment exposure to potential seismic hazards, therefore 
alleviating seismic risks. 

The efficacy of seismic monitoring systems significantly depends on their capacity 
to detect, locate, and measure mine seismic occurrences, hence enhancing the 
comprehension of rockbursting mechanisms. This comprehension is crucial for 
managing and alleviating seismic threats, leading to increased worker safety and higher 
mining output. The precision of these systems in consistently identifying event sources 
is intricately connected to the input velocity utilized in the event source computation 
method. 

Employing a singular static input velocity or presuming a stratified model with a 
uniform rock mass in an underground mining context is impractical and frequently 
leads to considerable source localization inaccuracies. Underground mining activities 
result in ongoing alterations in rock mass characteristics and void conditions. Mining-
induced stress changes can lead to rock mass fracturing, compromising its quality and 
triggering fault movements. Additionally, voids generated during ore extraction may 
be backfilled with materials of diverse sorts and strengths, while certain spaces remain 
unfilled. Thus, the conditions associated with underground excavations and the status 
of the formed voids are in a constant state of flux throughout mining activities. 
Therefore, employing a singular static input velocity or a stratified model with a 
uniform rock mass in seismic monitoring systems for source localization computations 
is unsuitable. 

Upon examining the literature, it is clear that a major source of uncertainty 
impacting source location precision is the velocity model employed in the localization 
method. Developing a dependable velocity model in mining is difficult due to the 
presence of many rock types and the continual fluctuations in rock mass conditions 
caused by void formation and stress variations. This complexity requires a dynamically 
evolving velocity model, which differs from the prevailing assumptions of employing 
single (homogeneous rock mass assumption) or variable static constant velocity 
models (layered rocks assumption) in seismic monitoring systems for seismic source 
localization computations. 
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3. METHODOLOGY  
 
To fulfill the thesis objectives, three primary tasks must be accomplished. The 

initial aspect pertains to the utilization of discrete physical models within a laboratory 
setting to simulate rock mass deterioration in subterranean mining. The laboratory 
provides a controlled setting to analyze fluctuations in seismic wave velocity due to 
ground condition deterioration. Executing experiments in regulated settings enables 
researchers to modify critical factors, meticulously analyzing their impacts both alone 
and collectively on the results. Homogeneous cubic samples of granite and concrete, 
varying in size and hole diameter, signify the progressive maturity of a mine. An rise 
in sample size indicates a larger mine, while a larger hole diameter reflects an enhanced 
extraction ratio with time. The spaces were filled with diverse materials (varied 
proportions of sand, cement, and water) reflecting distinct backfill types at different 
curing phases. The rock blocks were broken with a static cracking chemical to replicate 
mining-induced stress fracturing. Following the simulation of rock mass deterioration 
in subterranean mining, the wave velocity was assessed using rock blocks under the 
aforementioned conditions utilizing the Acoustic Emission (AE) technology. The 
experimental data was subsequently compiled into a database for future activities. 

  

Figure 1. Schematic representation of methodology 

The second task involves employing numerical modeling to analyze the sensitivity 
of seismic wave velocity to different parameters in the underground mining 
environment, as seismic wave velocity is closely related to the physical qualities of 
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rock. Dynamic numerical modeling was performed using FLAC3D for this purpose. 
The selection of the program was determined by the nature of the material being 
modeled and the spatial dimensions of the issue. FLAC3D, employing continuum 
mechanics, is appropriate for materials seen as continuous solids, whereas UDEC and 
3DEC, grounded on the discrete element approach, are optimal for distinctly separated 
or cracked materials. The research examines the impact of voids and the elastic 
properties of rock on the velocity of seismic waves in rock samples under transitory 
settings. Laboratory experiment findings involving granite and concrete cubes are 
simulated by dynamic numerical modeling in FLAC3D to accomplish this. 

The primary objective of this job is to conduct sensitivity and parametric 
assessments through a numerical simulation of granite and concrete cubes, focusing on 
their dynamic behavior. The data utilized for the simulation originates from 
experiments concerning AE outlined in the initial task. Comprehending the influence 
of many aspects on this analysis is essential, particularly concerning the velocity of 
wave propagation through rock and the transmission of seismic waves. This 
comprehensive analysis is crucial, as a precise comprehension of wave speed might 
enhance the reliability of rockburst incidence predictions. 

The third objective entails employing machine learning to forecast seismic wave 
velocity under diverse underground mine settings in real-time, intended as input for the 
seismic monitoring system's algorithm for source localization. This methodology is an 
innovative, three-faceted strategy that employs machine learning approaches for 
velocity forecasting and seismic event source localization, utilizing the simplex 
method. The database created with AE equipment was utilized to train the models. The 
initial phase emphasizes forecasting the velocity of seismic waves under diverse 
conditions utilizing machine learning algorithms, such as Linear Regression, Artificial 
Neural Networks (ANN), and Decision Trees (including ensemble techniques like 
Random Forest and Gradient Boosted Trees), to determine the most effective model. 
The second phase entails utilizing the simplex method for the initial identification of 
seismic event sources. The simplex technique optimizes an objective function that 
represents the travel time of seismic waves, which is contingent upon the anticipated 
velocities and likely locations of seismic events. To rectify the inaccuracies identified 
in the second phase, both the original and an enhanced dataset were utilized to train a 
machine learning model for the direct prediction of seismic event locations. This phase 
seeks to provide a more precise and refined prediction of seismic event sites. 

In conclusion, the extensive methodology incorporates acoustic emission testing 
under regulated laboratory circumstances, dynamic numerical modeling using 
FLAC3D, and the implementation of machine learning. This comprehensive approach 
underpins succeeding chapters, augmenting the study's robustness and enabling further 
analysis and inquiry. 
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4. LABORATORY EXPERIMENTS ON DISCRETE PHYSICAL MODELS 
MIMICKING MINE ENVIRONMENT  

 
4.1. Materials and methods 
 
Laboratory tests simulating underground mining conditions are undertaken to 

comprehend alterations in seismic wave velocity inside continuously deteriorating rock 
mass settings. Concrete and granite blocks were utilized to replicate different stages 
and circumstances in subterranean mining. The utilized blocks were cubic in shape. 
The selection of sample material was predicated on material uniformity. The cube 
dimensions ranged from 150 mm to 450 mm (Figure 2), taking into account the 
influence of boundary conditions according to the theory of elasticity. Each cube was 
designed with and without a hole to illustrate the progressive increase in mine 
extraction over time. The concrete cubes were fabricated in compliance with the ASTM 
C-109 standard. The cubes underwent testing following a 28-day curing period, at 
which point they would achieve 99% of their strength. The apertures were located at 
the center of the cubes and extended through the blocks. The diameters of the holes 
ranged from 50 mm in the 150 mm cube to 150 mm in the 450 mm cube, increasing in 
increments of 25 mm, while the cube dimensions expanded by 75 mm from the 150 
mm cube to the 450 mm cube (Table 1), illustrating a mine with a progressively 
increasing extraction ratio over time. 

  

Figure 2. Sample sizes 
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Table 1. 
 Geometry of rock samples 

Cube size (mm) Material type Hole diameter 
(mm) 

150 concrete 0 (No hole) 
150 concrete 50 
225 concrete 0 (No. hole) 
225 concrete 75 
300 granite 0 (No hole) 
300 granite 100 
375 concrete 0 (No. hole) 
375 concrete 125 
450 concrete 0 (No. hole) 
450 concrete 150 

 

The replicated mining cavities within the cubes were filled with diverse 
combinations of sand, cement, and water at varying proportions to simulate different 
backfilling processes at distinct extraction stages and intervals. A backfill ratio of 0% 
cement (100% dry sand), 0% cement (water-saturated sand), 5% cement, 10% cement, 
15% cement, and 20% cement contents was employed. Each kind of backfill was 
evaluated at many curing intervals (8 hours, 1 day, 7 days, 14 days, and 28 days) to 
assess the influence of the backfill cement ratio and duration on seismic wave velocity. 

Induced stress and blasting effects were modeled using a static cracking agent 
(SCA), a highly expansive powdered cementitious substance for the fragmentation of 
rock and concrete [81]. The level of damage in the rock and concrete cubes was 
assessed using a modified Rock Mass Rating (RMR) system [5], adapted for 
laboratory-scale application. Fractures in the rock and concrete cubes simulate joints 
found in actual mines. Acoustic emission studies were performed to ascertain wave 
velocity through each investigated cube condition, encompassing backfilling and 
fracture stages. Eight sensors were strategically positioned on the cubes, with one 
functioning as a pulser to generate the wave across the hole, while the remaining seven 
served as receivers. The data obtained from the AE tests encompassed the wave arrival 
time at each sensor. Sensor 1 (pulser) was positioned at the center of the front view of 
the cube to facilitate the passage of the generated wave through the aperture in the 
middle of the block (Figure 3). 
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Figure 3. AE sensors attached to the rock sample 

In mining operations, voids like stopes are typically filled with various types of 
backfill. To replicate backfilling, the voids in the blocks were later filled with backfill 
(Figure 4) utilizing varying cement to sand ratios of 0%, 5%, 10%, 15%, and 20%. The 
backfill with 0% cement concentration was evaluated in both dry and wet conditions. 
Each backfill type was cured for 8 hours, 1 day, 7 days, 14 days, and 28 days, and 
subsequently evaluated to evaluate the effect of curing duration on seismic wave 
velocity. 

 

Figure 4. Granite rock samples with the cube size 300 mm with and without holes 
(hole diameter is 100 mm) 

 



25 
 

Initially, samples containing voids were evaluated devoid of any backfill to 
simulate a mine without backfill material. The subsequent tests involved filling the 
holes with various cement-to-sand ratio backfills, which were cured for durations of 8 
hours, 1 day, 7 days, 14 days, and 28 days, to simulate a mine with diverse backfill 
kinds and ages. 

 
4.1.1. Granite cubes  
The research employed laboratory trials utilizing homogenous granite rock 

samples. The uniformity of the sample was the decisive element in selecting the rock 
type. The cube surfaces must be polished to a tolerance of 1 mm, ensuring that each 
pair of opposite faces is parallel. The uniformity and isotropy of the granite facilitated 
comparable outcomes. Preparing granite cubes in-house to match these criteria proved 
to be a difficulty. Consequently, a competent stone supplier was employed. 

The project was ideally meant to utilize solely granite cubes. Nevertheless, the 
expense of granite cubes and the difficulty in acquiring samples with uniform 
composition led to the utilization of synthetic rock in the form of concrete cubes. 
 

4.1.2. Concrete cubes 
The concrete cubes were fabricated in the laboratory using a blend of sand and 

cement to simulate rock. Sieve analysis was conducted utilizing the vibrating sieve 
shaker AS 200 basic to exclude clay particles, organic matter, and oversized fragments 
from the sand. Particles above 4mm were eliminated as oversized fragments, whereas 
particles smaller than 0.002mm were discarded as clay. A proper cement to sand ratio 
was determined in accordance with ASTM C-109 C standard [7]. The cubes were 
utilized following a 28-day curing period. The material proportions for standard 
mortars, as per ASTM C-109 C standard, were utilized as follows: a sand to cement 
ratio of 2.75 and a water to cement ratio of 0.485.  

Upon filling the mold with the mixture, it was vibrated for four minutes to ensure 
compaction and the expulsion of surplus air. Samples with a diameter of 37mm and a 
height of 74mm were prepared from the identical mixture for the UCS test as a control 
measure to guarantee uniformity in strength across all blocks. 

 
4.1.3. Backfill Characteristics and Curing 

Core samples containing 5%, 10%, 15%, and 20% cement were cast in wooden 
molds (Figure 5 a,b). The creation of the cement, sand, and water mixture involved two 
stages: the amalgamation of dry components (cement and sand) and the incorporation 
of wet components (the mixture of cement, sand, and water). Each process was 
executed for a duration of 3 minutes. The ASTM standard recommends a length-to-
diameter ratio of 2 to 2.5 for core specimens used in UCS tests. The prepared backfill 
core samples possess diameters of 37 mm and heights of 80 mm. All backfill samples 
were polished and assessed for the smoothness of the terminal surfaces using an 
absolute digimatic indicator, as depicted in Figure 5 c and d. According to the ASTM 
standard, the surface variation of the sample has not surpassed 1 mm.  



26 
 

 

a)                                        b) 

 

c)                                          d) 

Figure 5. Preparation of core samples for UCS testing at various ages: molding (a); 
core samples (b); polishing (c); smoothness check (d). 

The backfill strength was assessed by UCS tests. The UCS tests were conducted at 
curing ages of 1 day, 7 days, 14 days, and 28 days. UCS tests on core samples cured 
for 8 hours were disregarded due to the samples being excessively weak and moist for 
the testing protocol. Five tests were performed at each sample age for every backfill 
type; Figure 6 illustrates the average value of each UCS test. 
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Figure 6. Backfill strength and curing time relationship. 

The uniaxial compressive strength elevates with extended curing duration and 
increased cement content. UCS tests on core samples of backfill with cement contents 
of 5%, 10%, 15%, and 20%, cured for 28 days, exhibited greater magnitudes than those 
cured for 1 day with same cement contents.  The strength increased by 2.65 times for 
samples containing 5% cement, 3.1 times for those with 10% cement, 3.75 times for 
samples with 15% cement, and 4.9 times for those with 20% cement. 

 

4.1.4. Fracturing of cubes to mimic blast and stress induced fractures in 
underground mining   

A static cracking agent (SCA) was employed to create fractures in the cubes as an 
alternative to blasting. SCA is an extensive powdered cementitious substance utilized 
for the fragmentation of rocks and concrete [81]. The SCA makeup is presented in 
Table 2.  Upon combining with water and being poured into a cavity, the SCA expands, 
exerting pressure on the walls of the cavity to fracture the rock or concrete.  SCA is 
ecologically sustainable and secure, as it does not emit any noxious vapors or 
detrimental materials. Furthermore, there is an absence of noise and airborne debris 
during the expansion and demolition of the fractured materials.  

The SCA powder was combined with clean water at a ratio of 20% SCA to water. 
The liquid was poured into the block's holes within 5 minutes of preparation at a room 
temperature of 25 ℃ and a water temperature of 20 ℃. Fracturing of the blocks 
transpired after 2-3 hours of filling (Figure 7).  
 



28 
 

Table 2.  
Chemical Characterization of SCA [40] 

SiO2  MgO Fe2O3  CaO AI2O3 
5.10% 2.20% 1.40% 87.10% 2.40% 

 

 
 

Figure 1. Fractured cube with 3 joints 

4.2. Acoustic Emission Testing 
 
4.2.1. Equipment  
Acoustic Emission Testing (AET) is a method employed for the non-destructive 

evaluation of materials. AET can monitor alterations in material properties. This 
approach enables observation of crack propagation occurring within the interior of a 
material. Various terminologies are employed to characterize instabilities or "events" 
resulting from rock fracturing at distinct scales, as seen in Figure 8.   

 

Figure 8. Monitoring frequency ranges of earthquakes, macro/microseismic 
activity, acoustic emission, and associated fields of study/domains of research [13] 

[13] observes that in mine seismology, significant occurrences within the seismic 
spectrum are frequently referred to as mine tremors or mine-induced seismic events. 
Minor events typically situated near active mine stopes are commonly referred to as 
"microseismic events" because of their significantly lower magnitudes. At the lower 
end of the magnitude range, "acoustic emission" typically refers to high-frequency 
emissions or "rock noise" detected in rock samples subjected to loading in a laboratory 
or noticed in localized failure zones within a mine. The delineation between these 
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Seismicity Macro/microseismic Acoustic Emission (AE)

Frequency (Hz)
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categories is ambiguous, and some writers, including [20], using the term "acoustic 
emission microseismic" or "AE/MS" to broadly encompass the latter two categories. 
Consequently, microseismicity occurring during the failure phase of a material under 
load closely resembles acoustic emission (AE). Acoustic emissions are defined as the 
energy discharged from stressed materials. The discharge of localized strain energy 
may result from fracture and can be detected on the material's surface by sensors. 
Consequently, AET is juxtaposed with seismological procedures due to their analogous 
principles yet distinct scales. 

AET has been employed to monitor rock mass flaws in the initial phase before total 
failure occurs. The primary distinction from other non-destructive testing is in the 
nature of the data obtained and the method of application. In the ultrasonic approach, 
artificially generated signals and source-receiver configurations are employed to 
ascertain the geometric configuration of a defect within a sample. Conversely, AET can 
identify elastic waves traversing cracks within a sample [26]. In comparison to 
alternative non-destructive techniques, AET necessitates just a limited number of 
sensors under specific conditions capable of transmitting signals that exceed a trigger 
level threshold. AET does not require access to all sides of the sample, unlike all other 
through-transmission methods [26]. 

Figure 9 depicts a conventional acoustic emission detection system. AE sensors 
convert dynamic movements into electrical signals and identify AE waves at the 
surface of a substance. A preamplifier and main amplifier are employed to amplify 
weak AE signals, potentially offering a gain exceeding 1000 times. Elastic waves 
produced by the source disseminate across the material and are monitored by acoustic 
emission sensors [26].  

 

Figure 9. AE detection system [26] 

The AE approach has been employed to investigate mine seismicity [19] and 
Kennet et al. (2000). Figure 9 illustrates the AE system and its attachments. This study 
utilized the SAEU3H AE system. The SAEU3H AE system is a multi-channel 
apparatus comprising AE data acquisition modules, a chassis with front and rear panels, 
an optional network communication module, a laptop, eight sensors, preamplifiers, and 
cables (Figure 10). 
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(a) AE data acquisition 

modules, chassis with front and 
rear panels, optional network 

communication module, laptop 

(b) Preamplifiers and cables 

 
Figure 2. AE system and accessories 

In the laboratory experiments of this study, AE sensors were affixed to the surfaces 
of the cubes with hot glue, as seen in Figure 11. Each cube was equipped with eight 
sensors, one of which functioned as a generator to generate a pulse, while the remaining 
seven acted as receivers to detect the pulse wave. The wave was produced as a pulse 
from sensor number 1, positioned centrally in the front view of the cube, to facilitate 
the propagation of waves through the aperture. 

 

Figure 11. Sensor positions on the various cube sizes without hole 

   

(a) 150 mm cube (b) 225 mm cube (c) 300 mm cube 

  

 

(d) 375 mm cube (e) 450 mm cube  
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The SR150M High-frequency broadband AE sensor is the type of sensor utilized 
in the studies with cube sizes of 150 mm, 225 mm, and 300 mm. The sensor operates 
within a frequency range of 60-400 kHz, with a peak sensitivity exceeding 75 dB. The 
SRI150 sensor type was utilized for larger cubes measuring 375 mm and 450 mm. The 
sensor incorporates a preamplifier with a frequency range of 60 kHz to 400 kHz and a 
sensitivity of 40 dB. The alteration in sensor type was required since the SR150M 
sensors were unable to detect wave arrival times at the receiving sensors due to seismic 
wave attenuation in inelastic materials like rocks and concrete utilized in the 
investigation. Seismic waves diminish with time and distance in inelastic materials due 
to multiple inelastic energy dissipation mechanisms, including porosity, fractures, and 
tiny motions along mineral dislocations or shear heating at grain boundaries [1]. 
Seismic wave attenuation (∈) is frequently measured by the quality factor (Q) 
(Equation 1) as noted by Ammon in [1]. 

 
∈=

𝛾

𝑚𝜔
=

1

2𝑄
 

(1) 

Where ɣ=coefficient of friction, m=mass and ωo=resonant frequency 
A low attenuation (high quality factor Q) may signify a densely consolidated rock 

mass, capable of transmitting a displacement pulse with minimal energy dissipation, 
thereby arriving at the free surface with virtually full intensity, and conversely. 
Consequently, the bigger cubes and SR150M sensors experienced energy loss that 
halted wave propagation before reaching the receiving sensors, necessitating a 
transition to the SRI150 sensors. [13] observes that the characteristics of the rock mass 
impact the propagation of seismic waves within the medium, influencing not only the 
velocity of the waves but also the relative amplitude and frequency content of the 
signals, a phenomenon known as signal degradation or attenuation. In a mining context, 
seismic waves traversing a host medium are influenced by the rock composition, 
backfill material, voids, stress conditions, and the nature and distribution of geological 
structures like as faults, shears, and joints. 

 
4.2.2. Measurement setup  
The choice of suitable AE sensors was determined by the operating frequency range 

of the AE transducer and the characteristics of the wave propagation medium. 
Specifically, the former must align with the frequencies at which corrosion is 
anticipated to produce acoustic emissions. In the [18] the medium through which the 
waves propagate is concrete, a material characterized by low-frequency propagation. 
Furthermore, [85] indicated that in concrete monitoring, although the sensitivity of 
acoustic emission sensors improves with a decrease in resonant frequency, transducers 
with a low resonance frequency of 30 kHz are susceptible to significant noise 
interference. Consequently, AE sensors operating within the frequency range of 60-400 
kHz and exhibiting peak sensitivity above 75 dB were employed.  

The peak definition time (PDT), hit definition time (HDT), and hit lockout time 
(HLT) are critical factors for acoustic emission data collecting. The Pulse Detection 
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Time (PDT) denotes the duration measured by a counter, which resets to zero upon the 
identification of a fresh maximum signal, preceding the assessment of the genuine peak 
of the AE waveform seen in Figure 12. The HDT denotes the duration, measured by a 
counter reset to zero upon threshold crossing detection, necessary for the system to 
determine the conclusion of a hit, complete the measurement procedure, and retain the 
characteristics of the recorded signal as depicted in Figure 13. The HLT is the duration 
after a hit's conclusion during which the system refrains from responding to any 
threshold crossings, serving to mitigate the measurement of reflections and delayed 
signals [18].  

To prevent an extension of the AE activity period due to interfering reflections, 
PDT, HDT, and HLT were designated as 200, 400, and 3000 μs, respectively.  

 
Table 3.  

Summary of AE software settings 

Parameter Unit Value 
Threshold dB 30 
Parameters of 

timing 
  

PDT µs 200 
HDT µs 400 
HLT µs 3000 
Waveform setup   
Sampling rate MSPS 10000 
Sampling 

frequency 
Points 10000 

Digital filter   
Lower kHz 60 
Upper kHz 400 

  

 

Figure 12. Peak definition time 
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Figure 13. Hit definition time 

4.2.3. Procedure of velocity calculation with AE equipment  
[28] asserted that seismic monitoring systems primarily record the arrival timings 

of seismic waves, and by knowing the coordinates of the sensors and assuming a 
consistent velocity of seismic signal propagation through the rock, one can estimate 
the source location. Source location determination can be achieved through two 
primary methods: utilizing the arrival timings of P-waves exclusively or employing the 
arrival times of both P- and S-waves [28]. This research employed the direct approach 
of source localization as described by [6] and discussed by [28]. 
 

 𝑑 = ඥ(𝑥 − 𝑥ଵ)ଶ + (𝑦 − 𝑦ଵ)ଶ + (𝑧 − 𝑧ଵ)ଶ (2) 

 
Where 𝑖 = 2, 3, 4, 5, 6, 7, 8 and x, y, z – sensor coordinates. 
For each wave arrival time, the test was performed five times, and the mean 

arrival time at each sensor was employed to compute the wave velocity associated 
with that sensor.  

Wave velocity was calculated using the equation that subtracts wave arrival time 
from wave creation time. 

 
𝑣 =

𝑑

∆𝑡
 

(3) 

 

For each wave arrival time, the test was performed five times, and the mean 
arrival time at each sensor was employed to compute the wave velocity associated 
with that sensor.  

The wave velocity was calculated using the equation that subtracts the wave 
arrival time from the wave creation time. 
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Figure 14. Snapshot of AE results database 

The data collected, as illustrated in Figure 14 and detailed in Appendix 1, 
comprise the following: 

- Material type (rock or concrete)  
- Backfill characteristics, quality, and curing duration  
- Source location for each material  
- Wave arrival time at each sensor 
 - Calculated wave velocity at each sensor.  
 
 
4.3. Analysis of results from AE tests 
 
4.3.1. Size effect on seismic wave velocity 
The research primarily aimed to examine the influence of size, voids, varying 

backfill compositions, and age on seismic wave velocity. Figure 15 illustrates the 
seismic wave velocities for cubes of varying diameters devoid of perforations. 
According to the test findings depicted in Figure 15, there is no substantial variation 
in seismic wave velocities with increasing cube size, except at sensor 7. The wave 
velocity vary from 3,000 to 3,500 m/s, which falls within the values of 3,160 to 3,818 
m/s. The minor variations in velocities among the five cubes may be attributed to 
discrepancies in the concrete mix quality and potential inaccuracies in measuring 
wave arrival times. 

 

Figure 15. Seismic wave velocities on concrete cubes without holes 
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4.3.2. Hole effect on seismic wave velocity 
Figure 16 illustrates the outcomes of acoustic emission measurements conducted 

on concrete cubes including voids. The test results in Figure 16 indicate that the 
velocities in the 150-, 225-, 300-, and 375-mm cubes with 50-, 75-, 100-, and 125-mm 
diameter holes are not considerably impacted when compared to their corresponding 
solid cubes. The velocity at the sensors for these cubes range from 3033 to 3577 m/s. 
The 450 mm cube with a 150 mm hole width exhibits a notable alteration in seismic 
wave velocity at sensors 2, 3, 6, and 7. Sensors 4 and 5 exhibit velocities of 3558 and 
3635 m/s, respectively, indicating that they are unaffected by the void. Sensors 6 and 7 
exhibit the most pronounced decline in velocities, over 1500 m/s, from the peak value 
in the 450 mm cube with a hole width of 150 mm. The considerable decrease in 
velocities is attributable to the positioning of the sensors directly opposite the source 
sensor. Wave energy attenuation is significant due to the vacant 150 mm diameter 
aperture and the disregarded influence of ray path tracing in the distance computation, 
leading to prolonged arrival times and consequently reduced velocities. The findings 
indicate that the assumption of straight ray routes was not substantially influenced by 
the holes in the smaller cubes; but, the 150 mm hole in the 450 mm cube did change 
the paths, with the extent of impact varying based on the sensor's position relative to 
the source and the hole. 

 
Figure 16. Seismic wave velocities in blocks with holes of different diameters at 

sensor locations 

 
4.3.3. Backfill effect on seismic wave velocity 
Figure 17 presents the seismic wave velocity outcomes for each backfill type at the 

cured age for wet sand (0% cement), 5% cement, and 20% cement, corresponding to a 
cube size of 150 mm with a hole width of 50 mm. The ray paths of sensors 2, 3, 4, and 
5 in Figure 16a for wet sand remain unaffected by the backfill in the void, whereas the 
ray paths from the source to sensor 7 are considerably influenced by the void and its 
contents on days 14 and 28, when the wet sand would have dried. The elevated cement 
content backfill (15% and 20% cement) exhibits a diminished effect on wave velocity 
after 28 days of curing, as illustrated in Figure 17c. Figure 17b illustrates a general 
decline in velocities across all curing durations at sensors 5 to 8, which is ascribed to 
the void and its contents, as well as the positioning of these sensors in relation to the 
source. Figure 17c, featuring a backfill cement percentage of 20%, demonstrates a 
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substantial influence of the void and its composition on the pulse wave velocities at 
sensors 5, 6, and 8, attributable to their respective proximities to the void and source. 
It is plausible to assert that, although straight ray pathways were presumed in the pulse 
wave velocity calculations, the influence of the void and its contents is evident without 
ray  tracing, albeit it could be enhanced with ray tracing. 

 
(a) Wet sand (0% cement)                                                        (b)    5% cement 
 

 
(c)  20% Cement 

Figure 3. Backfill effect on seismic wave velocity for 150 mm cube with 50 mm 
diameter hole (a) Wet sand - 0% cement (b) 5% cement (c) 20% cement backfill. 

Figure 18 illustrates the influence of the void and backfill effect on wave velocities 
at the receiving sensors on the 225 mm cube with 5% and 15% cement content backfill 
within the void. In Figure 18a, for a 5% cement content backfill, the wave velocities 
for all curing durations vary from 2879 to 3200 m/s, similar to the behavior observed 
in a concrete cube without a void. The pulse wave velocity is considerably influenced 
from the source to receiving sensors 2 and 4 in Figure 18b due to the presence of voids 
and backfill. 

 
(a) 5% cement                                (b)  15% cement 

Figure 4. Backfill effect on seismic wave velocity for 225 mm concrete cube with 
75 mm diameter hole (a) 5% cement (b) 15% cement 
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Figure 19 illustrates the acoustic emission test results for the 300 mm granite cube 
with varying cement content backfills at different ages. Figure 19 a-d illustrates 
reductions in velocities at sensors 3, 4, and 7, indicating their positional relationship to 
the source and vacuum. 

 
(a) 5% cement                                   (b)    10% cement 

 
(c) 15% cement                                 (d)    20% cement 

Figure 5. Backfill effect on seismic wave velocity for 300 mm granite cube with 100 
mm diameter hole (a) 5% cement (b) 10% cement (c) 15% cement (d) 20% cement 

The velocities to the other sensors remain unaffected, indicating that their ray 
trajectories were not influenced by the void. The velocities at sensors 2, 5, 6, and 8 
remain unaffected, ranging from 3600 m/s to 4100 m/s.  

Figure 20 indicates that sensors 7 and 8 are considerably influenced by the 125 mm 
diameter void and the temporal alterations in backfill qualities within the 375 mm cube. 
The two sensors are positioned at the apex of the cube, adjacent to the void, and the 
wave pathways to these sensors are influenced by the vacuum and its contents to 
varying extents. 

  
(a) Wet sand (0% cement)                                   (b) 5% cement 
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                        (c) 10% cement                                   (d) 15% cement 
 

 
                                                      (e) 20% cement  

Figure 6.  Backfill effect on seismic wave velocity for 375 mm concrete cube 
with 125 mm diameter hole (a) wet sand (b) 5% cement (c) 10% cement (d) 15% 

cement (e) 20% cement backfill 

Figure 21 shows the results of the impact of backfilled cement content with time 
on wave velocities at sensors attached to the 450 mm cubes with a void of 150 mm 
diameter at different locations relative to the source and void. In Figure 21a for wet 
sand with 0% cement, the velocities show lower values at sensors 2, 3, 7 and 8. This is 
due to the sensor locations relative to the void and source. 

 
(a) Wet sand (0% cement)                                   (b) 15% cement 
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(c) 20% cement 

Figure 7. Backfill effect on seismic wave velocity for 450 mm concrete cube with 
150 mm diameter hole (a) wet sand (b) 15% cement (c) 20% cement backfill 

4.3.4. Fracture effect on seismic wave velocity  
Following the fragmentation of rock and concrete cubes, the SCA was extracted 

from the cavities. Fragmented components were systematically reassembled and 
secured with tape where required. Figure 22 illustrates the positions of the source and 
the sensors concerning the fissures in the concrete specimens. 

 
(a)                                              (b) 

Figure 8. The projected source and sensors’ locations for a) 225 mm with hole 
diameter 75 mm b) 375 mm with hole diameter 125 mm concrete sample 

Figure 23 illustrates the seismic wave velocity within a cracked cube including 
backfill. Sensors 1, 5, and 7, positioned before the fissures, accurately detected the 
signal. Conversely, sensors 3, 4, and 6 were unable to detect the signal or got a 
diminished signal due to signal attenuation in the cracks. 

 
(a) 5% cement                                         (b) 20% cement 

Figure 9. Fracture effect on seismic wave velocity for 150 mm concrete cube with 
50 mm diameter hole (a) 5% cement (b) 20% cement backfill 
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(a) 5% cement                                         (b) 20% cement 

Figure 10. Fracture effect on seismic wave velocity for 225 mm concrete cube 
with 75 mm diameter hole (a) 5% cement (b) 20% cement backfill 

Upon filling the broken 225 mm sample with backfill, the cube exhibited two 
cracks in relation to the sensors. Figure 24a indicates that only sensors 5, 6, and 7 
successfully received the signal. Sensor 5 is positioned opposite the hole relative to the 
source; yet, it may detect the signal with a delayed arrival time due to the fracture, as 
indicated by the reduced wave velocity of 500 m/s.  The crack presumably contained 
infill from the backfill, facilitating the transmission of the pulse signal across the 
fracture at this sensor's site. 

 
(a) 5% cement                                (b) 20% cement 

Figure 11. Fracture effect on seismic wave velocity for 300 mm granite cube with 
100 mm diameter hole (a) 5% cement (b) 20% cement backfill 

In a 300 mm granite cube, only sensor 5 received an unattenuated full signal, while 
sensor 8 detected a weak signal due to its position before the crack; the remaining five 
sensors were unable to receive any signal due to complete attenuation caused by the 
crack. 

 
Figure 12. Fracture effect on seismic wave velocity for 375 mm concrete cube 

with 125 mm diameter hole filled with 15 % cement backfill 
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Two cracks were present in the 375 mm cubes containing 15% cement backfill. 
Figure 26 illustrates the seismic wave velocity within a cracked cube including backfill. 
Sensors 4, 5, 6, and 7, positioned before the cracks, accurately detected the signal. 
Conversely, sensors 2, 3, and 8 failed to detect the signal due to complete attenuation 
within the fissures. 

 
Figure 13. Fracture effect on seismic wave velocity for 450 mm concrete cube 

with 150 mm diameter hole filled with wet sand backfill 

Two cracks were discovered in the 450 mm cube. Figure 27 illustrates the seismic 
wave velocities within a 450 mm cube containing fractures filled with backfill. Sensors 
2, 3, 6, and 7, positioned in advance of the fissures, detected the signal as anticipated. 
Conversely, sensors 4, 5, and 8 failed to detect the signal, which was ascribed to 
complete signal attenuation caused by the cracks. 

 
 
4.4. Rating of fractured blocks   
 
An assessment of two prevalent rock mass categorization techniques, RMR and Q, 

was performed to ascertain their suitability for application to the specified fractured 
blocks. The rationale for choosing a categorization system was its ability to effortlessly 
shift from field-scale application to laboratory-scale use. RMR provides a benefit in 
the decision-making process by incorporating the rock mass uniaxial compressive 
strength as a crucial metric. This trait is crucial for distinguishing between weak and 
strong rock formations that have analogous structural characteristics. Consequently, 
RMR became the favored option for evaluating the fragmented blocks in the laboratory. 
The RMR system presented in Table 8 [5] was employed to evaluate the characteristics 
of the blocks post-fracture. Prior to the computation of RMR, the following procedures 
were executed in accordance with the RMR determination protocol established by [5]:  

- Enumeration of all fractures within the block - Measurement of the apertures of 
the fractures - Measurement of the lengths of all fractures 

Assessment of the roughness of each fracture 
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Table 4.  
RMR system [5] 

Parameter RMR 
1973 1974 1976 1979 1989 2011 2013 2014 

Intact rock strength 
(MPa) 

10-0 10-0 15-0 15-0 15-0 15-0 15-0 15-0 

RQD (%) 16-3 20-3 20-3 20-3 20-3 20-0 - - 
Joint spacing (mm) 30-5 30-5 30-5 20-5 20-5 20-0   

Discontinuity 
density 

(Joints per meter) 

- - - - - - 40-0 40-0 

Separation of joints 
(mm) 

5-1 - - - - - - - 

Continuity of joints 
(m) 

5-0 - - - - - - - 

Weathering 9-1 - - - - - - - 
Condition of joints - 15-0 25-0 30-0 30-0 30-0 30-0 20-0 

Groundwater 10-2 10-2 10-0 15-0 15-0 15-0 15-0 15-0 
Alterability (%) - - - - - - - 10-0 

Adjustment 𝐹 15-3 15-3 0-(-
12) 

0-(-
12) 

0-(-
12) 

0-(-
12) 

0-(-
12) 

0-(-
12) 

𝐹 - - - - - - - 1.32-
1 

𝐹௦ - - - - - - - 1.3-1 
Fo - adjustment factor for the orientation of tunnel axis, Fe - adjustment factor to 
account for an excavation method and Fs - adjustment factor considering stress-strain 
behavior of the rock mass at the tunnel face. 
 

4.4.1. Scaling of RMR parameters  
[80] emphasized the necessity of appropriately scaling results from a physical 

model to align with actual mining circumstances. They observed that attaining total 
congruence between physical models and real mines is difficult; however, geometric 
similarity is the crucial element and may be very easily accomplished in a physical 
simulation. To appropriately depict the dimensions of concrete blocks that replicate 
mining settings, characteristics such as Rock Quality Designation (RQD), fracture 
length, and spacing must be modified. 

Geometric similarity was identified as the fundamental factor in scaled physical 
models, as highlighted by [80]. The research executed particular scaling modifications 
for fractures, concentrating on the subsequent metrics: 

 𝑙 = ∅ ∗ 𝑙ௗ  (4) 
Where lm signifies the length of the fracture inside the simulated in situ rock 

mass,, 𝜙  represents the length scale coefficient, and ld refers to the length of 
discontinuity employed in the RMR system for assessing in situ conditions. 
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 𝑠 = 𝛽 ∗ 𝑠ௗ (5) 
 
 sm denotes the spacing of fractures in the mimic model, sd signifies the spacing of 

discontinuities in the RMR system rating, and 𝛽  represents the length scale coefficient.  
Table 6 displays the modified values for distinct cube dimensions, calculated using the 
length scaling factors obtained from equations 4 and 5, in accordance with the joint 
condition rating method established by [5] for in-situ rock formations. The RMR 
parameters necessitating scaling from in situ to laboratory scale models are RQD and 
fracture attributes. 
 

4.4.1.1.1. RQD scaling 
In 1967, Deere [17] first presented the Rock Quality Designation (RQD) 

framework as a uniparametric system for the characterization of rock masses. RQD is 
a modified metric for core recovery percentage, calculated by dividing the cumulative 
length of unbroken core samples longer than 100 mm by the overall length of the core 
run. The sensitivity of RQD to the core traverse extent is recognized, leading to the 
advice by [66] that its calculation should be based on real field-derived drill lengths, 
ideally restricted to 1.5 meters. 

In 1982, Palmstrom established the notion of volumetric joint count (Jv) for 
quantifying joint occurrences in rock masses [61]. Jv represents the quantity of joints 
per cubic meter and is determined by enumerating the joints within a certain area and 
dividing that count by the area [61]. Palmstrom in the [61] presented Equation (6) that 
correlates Jv with RQD. 

 𝑅𝑄𝐷 = 110 − 2.5𝐽௩ (6) 
This research employed the Jv approach to ascertain RQD in fragmented blocks. The 
methodology for calculating the scaled RQD from the broken blocks is outlined in 
Section 4.5.4. 

 
(a) 2 fractures in 375mm cube           (b) 3 fractures in 150mm cube  

Figure 14. Fractured cubes with different fracture patterns and densities 
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4.4.1.2. Calculations of the scaled RQD  
Palmstrom in the [62] indicates that in the absence of borehole or scanline logging 

data, as in this work, Equation (6) can be utilized to determine RQD from Jv, which is 
necessary for the Q and RMR classification systems. Equation (6) can be reformulated 
as presented in Equation (7): 

 RQD=110-2.5(K.J_s)                                          (7) 

Js denotes the density of joints per unit area in a two-dimensional framework, as 
ascertained via window mapping. The transformation of Js to Jv in a three-dimensional 
environment is accomplished via the factor K, such that Jv = K * Js. The value of K 
generally lies between 1.25 and 1.35 under conventional conditions, however with 
uniformly distributed joints in all directions, it varies from 1.15 to 1.5, as per 
Palmstrom [61]. Palmstrom in the [62] determined that Equation (7) is applicable for 
Jv values ranging from 4 to 44. Outside this region, the Rock Quality Designation 
(RQD) metric exhibits diminished sensitivity to joint frequency. The concordance 
between Jv and RQD corroborates the apprehensions earlier articulated by Palmstrom 
in the [62], along with those of [52, 25]. Nonetheless, given the lack of a substitute, 
RQD remains a crucial component of rock mass classification systems.  

This study evaluated the number of fractures from a plan perspective of each cube. 
Table 5 delineates the fracture count per unit area for different cube dimensions, as well 
as the factors necessary for RQD calculation. The dimensions of each cube's plan view 
determine the size of the surrounding window used for fracture counting. 

The subsequent phase requires the identification of appropriate scaling factors to 
accurately adjust the field's window mapping area to the plan view area of the 
laboratory's cubes. The ultimate dimensions of the window utilized in geotechnical 
mining depend on various aspects, including project-specific goals, data type, available 
resources, and equipment. Window diameters typically range from a few millimeters 
to several meters, depending on the extent of the mining operation and the required 
complexity for mapping and geotechnical activities. The dimensions of the window for 
RQD calculation depend on the excavation's size and the exposed surface area. 

4.4.1.3.   Scaling cube fracture area density from field window mapping practice 
characteristics 

To compute Js in Equation (7), it is essential to modify the fracture density from 
the plan view area of the laboratory-scale cubes to correspond with the dimensions of 
the mapping windows for in situ rock mass assessment. 

[56] examined methodologies for mapping geological characteristics to evaluate 
slope stability. They proposed that, contingent upon the available region for mapping, 
the mapping window should typically extend approximately 10 meters in length. In 
mapping open pit regions with significant exposed rock, bigger window widths, 
typically spanning tens to hundreds of meters, are frequently employed. [77] and [29] 
utilized window dimensions ranging from 90 meters by 45 meters to 130 meters by 65 
meters to investigate the reliability of slope stability. They determined that employing 
rectangular windows for mapping was superior to utilizing circular ones. [3] conducted 
another investigation with smaller window dimensions of 1.9 meters by 2.2 meters for 



45 
 

excavations varying in size from 3 meters by 4 meters to 6 meters by 6 meters. They 
employed a 1 meter by 1 meter window, as indicated by the research of [88]. [78] 
referencing the work of [56], established rules for ascertaining window size in slope 
stability mapping. [78] proposed that the roughness of discontinuities should preferably 
be assessed on exposed surfaces measuring at least 2 meters in length, if feasible. [42] 
employed a window measuring 1 meter by 0.67 meters on a rock outcrop. [56] 
emphasized that assessing roughness on exposed surfaces measuring a minimum of 2 
meters in length in the field could serve as a foundation for establishing a suitable 
window size. Circular window mapping [74] has also been proposed; however, this 
study exclusively concentrated on rectangular or square designs and did not take 
circular windows into account. 

[43] employed window dimensions of 1.8 meters by 1.8 meters in an underground 
hard rock mine. Besides the dimensions of subterranean excavations determining 
window size, [51] noted that the mapping height is typically constrained to 
approximately 2 meters. This is due to the improbability of an individual safely 
attaining a height above 2 meters in contact mapping, irrespective of the general 
accessibility of the rock exposure.  

 
4.4.1.4.  Scaled RMR for fractured cubes 
Given the aforementioned window size possibilities and methodologies, it is 

prudent to propose a window dimension of 2 meters by 2 meters as adequate and 
appropriate for subterranean mapping to ascertain fracture density (Js). This window 
dimension enables the laboratory-scale cubes to be enlarged to match the field window 
size. Table 5 presents the conversion factors for various cube dimensions utilized in 
this investigation. 

 
Table 5.  

Conversion factors for scaling laboratory-scale plan view fracture densities (Jls) 
to field-scale fracture densities (Js) and RQDs. 

Cube side  
length (m) 

Window size 
(plan view): Area 
(m2) 

Scaling  
factor 

Number of  
fractures 

Jls Js Jv RQ
D 
(%) 

0.150 0.0225 1:13 3 133 10.2 13.4 77 
0.225 0.0506 1:9 3 59.3 6.59 8.56 89 
0.225 0.0506 1.9 2 39.5 4.39 5.71 96 
0.300 0.0900 1:7 2 22.2 3.17 4.17 100 
0.300 0.0900 1.7 3 33.3 4.75 6.18 95 
0.300 0.0900 1.7 8 88.9 12.7 16.51 69 
0.375 0.1406 1:5 2 14.2 2.84 3.70 100 
0.450 0.2025 1:4 2 9.9 2.47 3.21 100 

According to Section E of [5] table on Rock Mass Rating (RMR) variables, all fractures 
within the cubes are classified as dry, rough, unweathered, and free of infilling. These 
attributes correlate to scores of 0, 5, 6, and 6, yielding a total rating of 17. Table 6 
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displays the factor ratings for RMR along with their corresponding values for the 
examined mortar cubes. 
Following a curing time of 28 days, core samples were taken from the mortar cubes 
and subsequently fractured. The samples were subsequently subjected to uniaxial 
compressive strength (UCS) tests. The uniaxial compressive strength values for the 
shattered cubes, presented in Table 6, indicate a notable diversity in the strengths of the 
mortar cubes. Furthermore, fracture spacing, lengths, and apertures were measured in 
each broken block from a plan view perspective. 
 
Table 6.  

RMR calculations for each fractured cube. 
Cube 
side 
length 
(mm) 

RQD  Fracture 
spacing  

Fracture 
aperture  

Fracture 
length  

UCS  RM
R 

(%) Ratin
g 

(m) Rati
ng 

(mm
) 

Ratin
g 

(m Rati
ng 

MPa Ratin
g 

150 77 17 0.65-
1.30 

15 0.1-
1.0 

4 0.98-
1.95 

4 34 4 61 

225 89 17 0.68-
1.35 

15 1-5 1 1.0-
2.03 

4 19 2 56 

225   
96 

  20 0.68-
2.1 

     15    1-5 1 1.0-
2.03 

4 3
2 

4 61 

300 10
0 

20 0.70-
2.10 

15 1-5 1 1.05-
2.10 

4 26 4 61 

300 95 20 0.14-
0.28 

10 5.56 0 0.28-
0.91 

6 32 4 57 

300 69 13 0.035-
0.28 

10 2.47 1 0.14-
0.91 

6 32 4 51 

375 10
0 

20 0.63-
1.88 

15 >5 0 1.31-
2.63 

4 24 2 58 

450 10
0 

20 0.60-
1.80 

15 1-5 1 0.90-
1.80 

4 12 2 59 

 

The findings indicate that expanding the in situ RMR system to laboratory-scale 
physical models for fractured concrete blocks is viable. Scaled RMR values will be 
utilized to evaluate fractured cubes to assess the impact of fracture intensity on seismic 
wave velocity. 

 
 
4.5. Summary  
 
Chapter 4 presents an experimental research aimed at examining the features of AE 

signal propagation to signal receivers under challenging conditions, utilizing 
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laboratory physical models that replicate the intricate mining environment. The 
subsequent results are drawn from the acoustic emission measurements conducted on 
different circumstances of concrete and granite samples:  

- In isotropic homogeneous (intact) blocks, the assumption of a straight raypath is 
valid, allowing for the safe application of constant and layered velocity models in the 
presence of voids and cemented backfills; - The impact of voids and backfills on 
acoustic emission signal travel time is insignificant in small 150 mm blocks. 
Nevertheless, when block size and void diameter rise, together with backfill in the 
voids, the signal travel time to sensors escalates; - the existence of fractures results in 
signal attenuation contingent upon the sensors' proximity to the crack and the source. 

Additionally, it was essential to segment the block models to replicate stress-
induced fracturing resulting from mining activities. The SCA fractured the samples to 
varying extents based on their quality. To evaluate the characteristics of the fractured 
samples, the rock mass classification method was employed. RMR was chosen for this 
purpose due to the scalability of its constituent parameters. The RMR parameters 
necessitating scaling from in situ to laboratory scale models are RQD and fracture 
attributes. The findings indicate that the scaling of the in situ RMR system to 
laboratory-scale physical models for the cracked blocks is viable. 
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5. DYNAMIC NUMERICAL MODELING  
 
Laboratory studies involving concrete cubes and acoustic emissions were 

simulated using dynamic numerical modeling in FLAC3D to enhance the 
understanding of wave propagation characteristics and their sensitivity to diverse 
medium variables.  

 
 
5.1. Model Construction and Input Parameters  
 
The model was not exposed to external loading, indicating that no initial stresses 

were imposed on it. The laboratory AE tests did not involve external force on the 
blocks.  A solid cube with no voids was constructed using a brick with a side length of 
300 mm. A cylindrical brick with reflections at both ends was placed on the solid cube 
to depict a cube with a hollow interior. In the laboratory testing, sensor number 1, which 
emits the signal, is represented on the model as a red dot according to the established 
geometry and location (Figure 29). The developed model was employed to examine 
the influence of diverse circumstances on seismic wave velocity (sensitivity analysis) 
within the granite and concrete cubes and to comprehend the underlying physics of the 
issue. The model's input parameters were modified to simulate various rock types in 
order to analyze the influence of different rocks on seismic wave velocity. 

  

 
Figure 15. Geometry of the granite cube, with and without hole. Without hole, the 

green cylinder and the rest of the block have the same properties and with hole it is 
assigned the properties according to the code guidelines. 

The elastic characteristics of granite and concrete samples were derived from 
laboratory research.  Table 7 presents the input parameters of the model. 

Table 7.  
Granite and concrete properties 

Parameter  Concrete Granite  

UCS  25 MPa 153.3 MPa 
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Tables 7 continued 

Parameter  Concrete Granite  

Young’s modulus  18.3 GPa 66.56 GPa 

Poisson’s ratio  0.28 0.23 

Shear modulus  11.7 GPa 27.01 GPa 

Bulk modulus  17.8 GPa  41.1 GPa  

Density   2.4 g/cm3 2.7 g/cm3 

Damping must be implemented in a system exposed to dynamic loads; otherwise, 
the system will oscillate perpetually. FLAC 3D incorporates three damping choices 
within its code: Rayleigh damping, local damping, and artificial viscosity damping. 
Local damping was selected for this study. Local damping is incorporated in the FLAC 
3D static solution and can be utilized for dynamic analysis when the input time history 
is uncomplicated. The essential damping ratio is often between 2% and 5%, as 
determined in laboratory tests; this investigation utilized a value of 5%. 

 
 
5.2. Boundary Conditions  
 
In dynamic studies, the imposition of boundaries on the model may result in the 

reflection of applied propagating waves back into the model. Employing a larger model 
may mitigate this issue; however, it consequently results in more processing time. An 
approach is to employ a silent (quiet, viscous, or absorbing) border to address the issue. 
The silent boundary functions within the time domain and is predicated on the 
utilization of independent dashpots in both the normal and shear directions at the model 
boundaries. According to [30], a quiet border effectively absorbs propagating waves 
when the angles of incidence exceed 30°. The silent border is most appropriate for 
dynamic sources applied within a grid. The side borders of a model should not be 
utilized when the dynamic source is applied at the top or bottom bounds, as the 
propagating wave will escape via the side boundaries. In this instance, a quiet boundary 
was implemented at the bottom, while a free-field boundary was utilized for the 
remaining sides of the cube. 

 
 
5.3. Model Meshing  
 
The process of mesh production in FLAC for this arrangement is relatively 

uncomplicated. The maximum grid size is constrained in the dynamic setup to provide 
appropriate seismic wave propagation. According to [41, 30] the element dimension, 
Δl, should not exceed ∆l<λ/10. The designated wavelength, λ, corresponds to the 
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greatest frequency component of the input ground motion that possesses substantial 
energy.  

The maximum size of the finite difference grid was determined using Equation 8, 
where ∆l represents the spatial element size, λ and f denote the wavelength and 
frequency of the highest frequency component with significant energy, respectively, 
and V_s is the average velocity derived from AE experiments in Equation 8: 

∆𝑙 <
𝜆

10
 

𝑓 <
ೞ

ଵ×∆
                                                (8) 

 
In equation 8, 𝑉௦= 3000 m/s, ∆l< 2.29 mm.  
 
 
5.4. Applied Signals and Histories  
 
Acoustic Emission (AE) analysis utilizes various parameters to measure the 

features of AE signals, such as the count of AE events, amplitude, ringing count, impact 
technique, rise time, duration, and additional factors [77]. The maximum value of an 
AE signal's amplitude is utilized to categorize the type of AE source. The energy 
associated with an AE event is determined by the area that lies between the waveform 
envelope and the threshold voltage line. The ringing count indicates the intensity and 
frequency of the AE signal, determined by the number of peaks that surpass the 
threshold. The duration of the AE signal, measured from threshold to threshold time, 
captures all AE activities throughout this interval, thereby offering valuable insights 
into the variations in the local stress characteristics of materials. The parameters are 
illustrated in Figure 31 and computed for the two scenarios presented in Table 8. 

From the laboratory work conducted with the AE system, two wave signals were 
obtained. AE represents a wave produced by an abrupt release of energy. Following 
amplification and digitization, an acoustic emission signal is depicted as a voltage 
versus time graph. Figure 30 illustrates the AE signal acquired for the solid cube 
scenario.  
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Figure 16. AE signal for solid cube case 

 
Figure 17. Definition of AE signal features [26] 

Table 3.  
Results from Channel 1 

Experiment Amplitude Counts Rise Time Duration Energy 

Solid Cube 59.6 251 3 123 4.05 

Empty Hole 59.4 323 3 975 4.593 

 

The The time history can serve as an internal dynamic load at grid points within 
the model or as an external dynamic load at the model's boundary. Dynamic loading 
can be applied through four fundamental methods: as a time history of acceleration, as 
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velocity, as stress (or pressure), and as force. FLAC indicates that the first and second 
alternatives are applicable in scenarios involving rigid bases, whereas the third and 
fourth options are suited for cases with flexible bases. 

The discrete measurement of the initial load results in an input time history that 
may display a pronounced peak velocity, a short rise-time, and a significant high-
frequency component. This presents a challenge for simulation calculations, as the 
element dimension, Δl, needs to be less than 1/10 of the wavelength (λ) to effectively 
represent the high-frequency component. Consequently, an increase in frequency 
necessitates a more refined grid generation in FLAC. To address this issue, a filtering 
process can be implemented on the input time history, eliminating the high frequency 
components. This allows FLAC to employ a coarser grid generation while maintaining 
the accuracy of the results. The Bandpass computer code was utilized in this study to 
filter the time history, effectively removing both low and high frequencies, thereby 
tackling the previously mentioned challenge [31].  

The subsequent steps were undertaken to ready the data for the filtering process: 
1. The SWAE software, which is bundled with AE equipment, presents the raw data 

for acceleration, velocity, and displacement over time, as well as their associated 
frequency spectrums. 

2. The raw data undergoes processing through a Butterworth filter, an Infinite 
Impulse Response (IIR) technique known for its precision and smooth frequency 
response, characterized by a gradual change in amplitude. 

3. Low frequency components are eliminated to remove motions that persist longer 
than the shake, as these enduring motions result in non-zero velocities and continuous 
movement at the conclusion of the velocity and displacement measurements. 

The filtering process was accomplished using a Fourier transformation. The 
process of Fourier transformation takes an input signal and transforms it into a series 
of sinusoidal waves, each characterized by distinct amplitude, frequency, and phase 
variations. The plot that results from amplitude versus frequency is referred to as the 
Fourier amplitude spectrum, while the plot of phase angle is termed the Fourier phase 
spectrum. The primary frequency of the original wave is determined through the 
Fourier amplitude analysis. The FFT analysis results for granite cubes are presented in 
Figure 32.   

 

a)                                                                      b) 
Figure 18. FFT analysis for a) granite material b) concrete material 



53 
 

A baseline correction was subsequently executed to ensure that both the residual 
velocity and displacement equated to zero. This procedure aims to ensure that FLAC 
does not display ongoing velocity or residual displacements once the motion has 
concluded.   

 
 
5.5. Parametric analysis 
 
The model's validation was accomplished by comparing the data produced by the 

model with the experimental results obtained. This analysis encompassed essential 
wave characteristics including velocity, amplitude, and attenuation. After validating the 
model with experimental data, the elastic properties and wave frequency of granite 
were modified to reflect those of concrete and sandstone. This modification was 
designed to examine the resulting variations in wave velocity across the various 
materials. Figure 33 depicts the positioning of sensors relative to the source. Tables 9 
and 10 present the calculated wave velocity at each sensor for the granite cube with an 
empty hole and the solid granite cube, respectively, based on the experimental data 
obtained from laboratory tests using the AE equipment. Tables 9 and 10 indicate that 
sensors 2 and 3 exhibit the lowest velocities, attributed to their positioning at the 
greatest distance from the source, which results in increased signal attenuation. 

 
Figure 19. Location of sensors from the source (plan view of 300-mm cube: hole 

diameter is 100 mm) 
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Table 4. 
Calculated wave velocity at each sensor in granite cube with empty hole 

Sensor  Velocity, 
m/s 

1 Source 
2 2378 
3 1923 
4 3786 
5 2564 
6 2733 
7 4031 
8 2554 

Table 5.  
Calculated wave velocity at each sensor in solid granite cube 

Sensor  Velocity, 
m/s 

1 Source 
2 3343 
3 3442 
4 4209 
5 3906  
6 4076  
7 3936 
8 3857 

 

The numerical model was enhanced by incorporating two checkpoints aligned with 
the coordinates of sensors 2 and 5, allowing for the assessment of velocities at those 
precise locations. The graphs illustrated in Figure 34 showcase both experimental and 
modeled data for a granite cube featuring an empty hole at sensors 2 and 5. Figure 35 
presents both experimental and modeled data pertaining to a solid granite cube. The 
experimental data, derived from AE test results, yields a unique arrival time at each 
sensor with established locations. Utilizing this information enables the calculation of 
velocity at each sensor. The velocity graph for the experimental data was created by 
interpolating the initial and final points related to velocity and time. 
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a)                                                                b) 

Figure 20. Experimental versus modelled velocity in granite cube with empty hole 
at sensors a) 2 and b) 5 

 
a)                                                                          b) 

Figure 21. Experimental versus modelled velocity in solid granite cube at sensors 
a) 2 and b) 5 

The dynamic modelling results of the solid granite cube, as illustrated in Figure 36, 
demonstrate wave propagation at time intervals of 0.1 ms and 1 ms following wave 
generation from the source across the cube.   

a)                                                                                    b) 
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c)                                                                                      d) 
Figure 22. Wave velocity in solid granite cube after 0.1 ms a) section view b) top 

view and 1 ms c) section view d) top view 

 
Figure 37 illustrates the results of dynamic modeling for a granite cube featuring 

an empty hole. The illustrations present snapshots of wave propagation at 0.1 ms and 
1 ms, showcasing both top and sectional views. The findings presented in Figures 36 
and 37 clearly indicate that the presence of a void significantly influences wave 
velocity. The emergence of a void causes signal attenuation, leading to a reduction in 
velocity. 

 
  a)                                                                                   b) 

 
c)                                                                                      d) 
Figure 23. Wave velocity in granite cube with empty hole after 0.1 ms a) section 

view b) top view and 1 ms c) section view d) top view 

Figures 38 and 39 illustrate similar modeling outcomes for concrete material, 
incorporating modifications to material properties as detailed in Table 7. The visual 
representations illustrate wave propagation snapshots at 0.1 ms and 1 ms, including 
both top and sectional views. The observations from Figures 38 and 39 clearly indicate 
that the existence of a void has a substantial impact on wave velocity, reflecting the 
trend noted in the granite material analysis. 
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a)                                                                                    b) 

 
c)                                                                                      d) 

Figure 24. Wave velocity in solid concrete cube after 0.1 ms a) section view b) 
top view and 1 ms c) section view d) top view 

c)                                                                                      d) 
Figure 25. Wave velocity in concrete cube with empty hole after 0.1 ms a) section 

view b) top view and 1 ms c) section view d) top view 

The change in material resulted in a variation in average velocity, showing a decline 
in the instance of concrete material. The average velocity recorded in concrete was 
2700 m/s, while in granite, it measured around 3100 m/s. 

In the third modeling scenario, sandstone material was utilized, and Table 11 
presents the parameters used for the modeling process. The typical velocity for 
sandstone is around 1700 m/s [89]. 

Table 6.  
Sandstone properties (Zhang & Guo, 2022). 

Shear modulus 5 GPa 
Bulk modulus 15 GPa 

Density 2.6 g/cm3 
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a)                                                                                    b) 

c)                                                                                      d) 
Figure 26. Wave velocity in solid sandstone cube after 0.1 ms a) section view b) 

top view and 1 ms c) section view d) top view 

a)                                                                                    b) 

 
c)                                                                                    d) 

Figure 27. Wave velocity in sandstone cube with empty hole after 0.1 ms a) 
section view b) top view and 1 ms c) section view d) top view 
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5.6. Sensitivity analysis  
 
A sensitivity analysis was performed utilizing the material properties of granite 

outlined in Table 7. The geometric configuration was modified to a cube with 
dimensions of 450 mm and a hole diameter of 150 mm. Models with varying 
frequencies for configurations both with and without holes are illustrated in Figures 
42-43. The results indicate varying velocities at specific locations within the sample, 
influenced by the frequency of the emitted signal during wave propagation. As the 
frequency increases, there is a greater attenuation of wave energy originating from the 
source, as illustrated in Figures 42 to 43.  A higher sampling rate in Acoustic Emission 
(AE) improves the precision of the signals. The presence of a hole leads to a heightened 
attenuation of wave energy in the vicinity of the hole, as demonstrated by the findings 
from the 450 mm cube featuring a 150 mm diameter hole in Figure 43. 

 

 

 

 
Figure 28. Velocity magnitude with different frequencies for solid 450 mm 

granite cube without hole. Section view at the middle of the sample and top view at 
0.1 ms 
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Figure 29. Velocity magnitude with different frequencies for 450 mm granite 
cube with hole diameter of 150 mm.  Section view at the middle of the sample and 

top view at 0.1 ms 

Other elements affecting the wave propagation pattern consist of material density 
and elastic parameters. Figure 44 demonstrates the variations in density, from loosely 
compacted materials like soil to more densely compacted substances. At a density of 
1700 kg/m3, wave attenuation is notably higher when compared to densities of 220 
kg/m3 or more. Therefore, it can be inferred that density influences the attenuation of 
seismic waves. 
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Figure 30. Velocity magnitude with different densities for 450 mm granite cube 

with hole diameter of 150 mm. Top view of a cut at the middle of the sample at 0.1 ms 

Accurate characterization of the elastic parameters of the sample is essential. 
Figure 45 demonstrates the considerable influence of elastic parameters on wave 
propagation. The model includes the parameters specified in Table 7. In particular, 
Figure 45(a) was created using half of the parameters outlined in Table 7, whereas 
Figure 45(c) employed double those values. 

 

 

 

 
Figure 31. Velocity magnitude with different elastic parameters for 450 mm 

granite cube with hole diameter of 150 mm. Top view of a cut at the middle of the 
sample at 0.1 ms 
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The modeling results depicted in figure 45 indicate a strong positive correlation 
between velocity and elastic properties. 

 
 
5.7. Summary  
 
The investigation examined the influence of voids on seismic wave behavior 

through the use of different materials and configurations, demonstrating that the 
introduction of voids leads to heightened attenuation. Seismic wave velocity exhibited 
a clear response to the properties of materials, particularly in relation to variations in 
density and elastic parameters. The relationship between higher material density and 
enhanced elastic parameters leads to an increase in seismic wave velocity, providing 
valuable insights for predicting occurrences such as rockbursts and fluctuations in 
stress within mining contexts. 
The robust correlation between experimental and modeled data confirms the 
dependability of the modeling methodology. Effective validation boosts trust in the 
precision of predictions, offering important insights for geomechanics and its 
applications in seismic hazard evaluation and mining safety. 
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6. MACHINE LEARNING  
 
Machine learning (ML) represents a comprehensive domain within artificial 

intelligence, focused on enabling computers to address intricate problems 
autonomously, without the necessity for explicit programming for every individual 
task. In the realm of machine learning, the concept of "training" denotes the procedure 
of acquiring knowledge from historical data. The capacity to learn and adapt by 
leveraging previous experiences to improve or gain new skills distinguishes ML from 
traditional methods of programming computers to perform designated tasks. 
Conventional computer programming relies on precisely articulating a problem by 
utilizing the established physical laws of the system under examination. On the other 
hand, ML emphasizes the analysis of data to predict the behavior of intricate systems 
that are challenging to articulate using conventional approaches. The training in ML 
can be categorized as supervised, where the system acquires knowledge from a dataset 
containing correct answers, or unsupervised, which entails recognizing patterns 
without any prior knowledge of outcomes [36]. 

 
 
6.1.  Data exploration  
 
Data exploration entails the process of uncovering insights from data to efficiently 

pinpoint pertinent data components. To guarantee dependable exploration outcomes, 
the raw data must be subjected to meticulous selection and cleaning processes. This 
resembles the management of seismic data at mining locations, where typically there 
is an individual assigned to the task of refining the seismic data to eliminate blasting 
events and other related sources that do not reflect the ground's responses due to mining 
activities. A variety of dataset-handling techniques were employed, such as one-hot 
encoding, addressing missing values, managing recurring parameters, standardizing 
data types, and normalization, to ensure the integrity and quality of the data. 

 
 
6.2  Initial data 
 
The laboratory test results produced in Chapter 4 provided the foundational data 

for the machine learning application. The dataset included details such as the 
coordinates of the source and receiving sensors, arrival times of the wave at each 
sensor, quality parameters of the backfill influencing wave velocity, and the quality of 
fractured and unfractured cubes, indicated by RMR scores and associated wave 
velocities. 

The dataset originally comprised 64 distinct parameters and a total of 1070 records, 
with 166 of those lacking any sensor data. Certain parameters included a combination 
of qualitative and quantitative data, whereas others exhibited missing values. There are 
repeated parameters, including the average velocity values from all sensors for each 
provided record. Additionally, the data format displayed inconsistencies, as numeric 



64 
 

values were occasionally represented in floating-point format and at other times in text 
format. 

The variables employed for training the models are detailed in Table 12. The sensor 
coordinates, distance to the source, and arrival time parameters vary based on the 
specific sensor or channel used. As a result, there exist seven datasets corresponding to 
each sensor, numbered from 2 to 8, with channel 1 serving as the source channel. 
Nonetheless, the other parameters maintain consistency throughout all datasets. 

Table 12.  
Variables used in training the models. 

Variable Unit Description 
Sample [-] The type of the experimental cube 

(concrete or granite) 
Block size [mm] The type of the experimental cube 

(concrete or granite) 
RMR [-] Rock mass rating, the fractured block 

quality 
Hole [-] Boolean value that represents the 

presence of the hole in the cube 
Hole Diameter [mm] The diameter of the cylindrical hole in 

the cube 
Cement 
Content 

[%] Percentage of the cement mixture in the 
hole 

Curing time [ms] The time elapsed after the hole was filled 
Backfill 
strength 

[MPa] Backfill material quality 

Source 
coordinates 

[m, m, 
m] 

Source coordinates in 3D space 

Sensor 
coordinates 

[m, m, 
m] 

Sensor coordinates in 3D space 

Arrival time [ms] The time at which the sensor captures the 
wave 

Distance to 
source 
UCS 

[m] 
[MPa] 

The distance from the sensor to the 
source 

Uniaxial compressive strength of the 
sample 

 

6.2.1. Dataset handling techniques 

To tackle parameters that involve both qualitative and numeric values, a division 
was executed, categorizing qualitative and numeric data into separate parameters. 
Every qualitative value was converted into a binary parameter, using values of 0 or 1 
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to indicate the absence or presence of the corresponding attribute. For example, the 
initial parameter representing cement content, which included different types and 
percentages within a single column, was broken down into more specific components. 
Distinct Boolean parameters were established for various content types, while the 
cement content column maintained only the percentage values. Qualitative data was 
substituted with 0, indicating the lack of cement content.  

To address the issue of missing values in the dataset, imputation was performed 
utilizing the mean value of the relevant field. In instances where specific records were 
devoid of information on backfill strength, the absent values were replaced with the 
mean value obtained from other known backfill strength figures corresponding to the 
same curing time. For instances where a value for a 7-day cured backfill was absent, it 
was replaced with the mean value derived from the available 7-day cured backfill 
samples. The dataset contains extensive mining-related information, and redundancy 
in parameters was tackled to improve the stability of machine learning training. 
Redundant parameters were systematically sorted or eliminated. A distinct parameter 
labeled 'qualitative data,' which summarized details on block description, hole 
presence, diameter, block size, and backfill type, was removed since these parameters 
were already included as independent fields. The data produced in the laboratory 
included both numerical and textual formats. To enable the effective use of machine 
learning algorithms and guarantee reliable outcomes, all data formats were 
standardized to a uniform float type. This process included the conversion of qualitative 
data, such as cement content, into binary formats and the transformation of textual data, 
such as '272.8,' into floating-point representations (e.g., 272.8). 

The preprocessed dataset underwent normalization to improve the stability of 
model training. This procedure entailed adjusting and normalizing inputs to establish a 
distribution centered around 0, with a standard deviation of 1. The average and variance 
of the data were calculated in advance, and Equation 9 was utilized during runtime to 
carry out the normalization process. 

(𝑖𝑛𝑝𝑢𝑡 − 𝑚𝑒𝑎𝑛)/√𝑣𝑎𝑟       (9) 
 
Following the application of the previously discussed techniques for dataset 

cleaning, we obtained a total of 730 records encompassing 60 distinct parameters. 
 
 
 6.3. Machine learning methods 
 
This study aims to identify the location of seismic events in underground mines, a 

complex endeavor complicated by the ever-changing ground conditions resulting from 
mining activities. We present a unique three-pronged strategy that incorporates 
machine learning techniques for predicting velocity and determining the source 
location of seismic events, utilizing the simplex method. Figure 46 illustrates the 
solution architecture. 
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Deep learning demonstrates significant potential in enhancing the accuracy of 
microseismic event source location, owing to its capacity to uncover hidden patterns 
and reduce the necessity for extensive feature engineering. A range of deep learning-
based approaches employing convolutional neural networks (CNN) have been 
suggested for tasks such as microseismic and seismic wave denoising, waveform 
processing, event detection, classification, and location [46, 63, 91]. Nevertheless, the 
uncertainty inherent in the geological model complicates the process of detecting, 
classifying, and locating events, which can be accomplished through either time of 
arrival picking or raw waveforms. Notable solutions encompass Bayesian networks 
and CNNs, which provide location information derived from channel impulse response 
[14, 59, 91]. 

 
 
6.4. Seismic event source location prediction 
 
6.4.1. Velocity prediction 
The initial stage of predicting the location of seismic event sources focuses on 

estimating the velocity of seismic waves under different conditions through the 
application of machine learning algorithms. In particular, Linear Regression, Artificial 
Neural Networks (ANN), and Decision Trees (including ensemble methods like 
Random Forest and Gradient Boosted Trees) were utilized to determine the most 
effective model. In ANN models, the Rectified Linear Unit (ReLU) activation function 
is utilized, and twelve distinct configurations are examined, altering the number of 
hidden layers and neurons within each layer. The evaluation of these models is 
conducted through essential metrics such as Mean Absolute Error (MAE). 
 

6.4.2. Initial seismic event source location 
The second phase entails utilizing the simplex method, a recognized optimization 

algorithm, for the initial identification of the seismic event sources. The simplex 
method serves to enhance an objective function that reflects the travel time of seismic 
waves, which is influenced by the anticipated velocities and the possible locations of 
seismic events.  
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Figure 46. Solution Architecture for velocity real-time velocity prediction and 

improved seismic event source location determination 
 
 
6.4.3. Refined seismic event source location 
In response to the errors identified in the second phase, a third phase was 

implemented, utilizing machine learning techniques to enhance the accuracy of seismic 
event location. During this phase, the model is not exclusively focused on the 
differences between the locations obtained from the simplex method and the real 
seismic event locations. Both the original dataset and an augmented dataset are 
employed to train a machine learning model specifically designed for predicting the 
location of seismic events. This phase aims to enhance the precision and accuracy of 
predicting the source location of seismic events. 
 



68 
 

6.5. Machine learning implementation 
 
6.5.1. Velocity prediction and simplex method 
Linear Regression employs a simple model to predict the dependent variable by 

analyzing independent parameters, with the goal of reducing the discrepancy between 
predicted and actual values. The straightforward nature, clarity, and ability to expand 
make it appropriate for a range of uses. This study employs Linear Regression to 
predict velocity based on data collected from 22 concrete blocks and wave arrival times 
recorded by seven sensors positioned at specific locations on concrete and granite 
cubes. 

Another alternative, Artificial Neural Networks (ANNs) (Figure 47), replicate the 
behavior of human neurons by transmitting signals with assigned weights, which 
constitute the foundation of neural networks. Deep learning, a sophisticated variant of 
machine learning, significantly depends on these networks, identifying complex 
relationships and patterns among features that might be missed by alternative 
approaches. This study involved testing a range of neural network architectures, each 
characterized by different configurations of hidden layers and neurons within those 
layers. The rectified linear unit (ReLU) function was utilized as the activation function, 
and a comprehensive evaluation of 12 distinct neural network configurations was 
conducted. 

In our study, we utilized Decision Trees, particularly Random Forest and Gradient 
Boosted Decision Trees, because of their high prediction accuracy and efficiency. 
Decision trees mimic the processes involved in decision-making; however, they can 
sometimes overfit the data, leading to models that are not as generalizable. Random 
Forest tackles this issue by combining several decision trees, enhancing collective 
intelligence while sacrificing interpretability and computational efficiency. Gradient 
Boosted DT advances this method by building trees in a sequential manner, addressing 
the limitations of earlier models and reducing loss effectively. 

After predicting velocity, the subsequent step is to ascertain the event source 
location through the application of the Simplex method. The Simplex method is 
extensively utilized in seismic monitoring systems, providing an efficient solution to 
non-linear equations. The simplex method is utilized in calculating the source location 
of seismic events by solving a system of equations that arise from velocity 
measurements and the time differences of seismic wave arrivals recorded by multiple 
sensors. 

 
Figure 47. Deep Neural Network with 2 hidden layers 
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This method presents the issue as a set of nonlinear equations derived from the 
subsequent algebraic expression: 

𝑣. 𝑡 + ඥ(𝑋 − 𝑎ଵ)ଶ + (𝑌 − 𝑏ଵ)ଶ + (𝑍 − 𝑐ଵ)ଶ

= ඥ(𝑋 − 𝑎)ଶ + (𝑌 − 𝑏)ଶ + (𝑍 − 𝑐)ଶ 

(10) 

Where a1,b1,c1 epresent the coordinates of the nearest sensor, while ai,bi,ci denote 
the coordinates of the ith sensor. The variable t indicates the time difference between 
the sensors.v represents the velocity, while X,Y,Z denote the coordinates of the event 
source. 

 
6.5.2. Direct seismic event source location 
This study presents the architecture for implementing the Simplex method as 

follows: 
₋ Input: The code requires the coordinates of seismic sensors, the anticipated 

velocities of seismic waves at the receiving sensor, and the time differences of seismic 
wave arrivals. 

₋ Objective Function: The code establishes an objective function that quantifies the 
discrepancy between the predicted and observed time differences. This objective 
function quantifies the error or residual associated with estimating the location of 
seismic events. 

₋ Initialization: An initial estimate for the coordinates of the seismic event is 
supplied to commence the optimization process. The initial estimate may be established 
at (0, 0, 0) or any other appropriate value. 

₋ Iterative Optimization: The code employs the simplex method to progressively 
refine the seismic event coordinates and reduce the objective function. The process 
begins with an initial estimate and systematically refines the coordinates to minimize 
the discrepancy between predicted and observed time differences. 

₋ Convergence: The optimization process persists until the objective function 
attains a minimum or a predetermined stopping criterion is satisfied. This guarantees 
that the solution aligns closely with the actual location of the seismic event. 

The output provides the estimated coordinates of the seismic event, reflecting the 
calculated epicenter derived from the optimization using the simplex method. 

The code utilizes the simplex method to calculate the location of seismic events, 
focusing on determining coordinates that reduce the difference between predicted and 
observed time differences at seismic sensors. The goal is to theoretically attain an 
accurate estimation of the epicenter of the seismic event. Nonetheless, real-world 
datasets frequently contain noise, making it impossible for some systems of equations 
to yield exact solutions. As a result, a method focusing on approximate solutions was 
adopted. In light of these endeavors, the approach continued to produce an error margin 
nearing 100%. Consequently, it was determined that the introduction of Direct Seismic 
Event location was essential. 
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To predict the location of the seismic event source, multioutput regression was 
necessary. Random Forest [33, 15], and Gradient Boosted Decision Trees [57]  paired 
with skcikit-learn Multi Output Regressor was used to run regression.  

Each model exhibited significant overfitting, primarily attributed to the limited 
diversity in the source location data, resulting in a prediction error of 0 cm for each 
coordinate. Recognizing the potential unreliability of such models in real-world 
scenarios, a strategic decision was made to introduce greater realism and robustness by 
randomly sampling a holdout dataset and incorporating noisy data. 

Initially, the seismic dataset is imported into a Pandas DataFrame, encompassing 
information about seismic events slated for location. To fortify the robustness and 
accuracy of the model, the dataset is stratified into five equal segments. Within each 
segment, random sampling is executed, where approximately half of the data is 
randomly chosen as a holdout test set, while the remaining half is retained for model 
training and testing. The determination of the number of random samples involves 
dividing the segment length by 2 and rounding up to ensure a representative data 
subset. The resulting holdout segments are amalgamated and stored for the ultimate 
testing phase of trained models. Additionally, datasets are saved as CSV files, thereby 
ensuring reproducibility. 

Iterating this process five times yields five distinct holdout and training datasets, 
each featuring diverse seismic events for training and testing. This iterative approach 
guarantees that the model undergoes training and evaluation on varied subsets of the 
dataset, contributing to a more robust assessment and instilling greater confidence in 
the model's performance. This methodology serves as a countermeasure against the 
pronounced overfitting tendencies observed in models. 

 
6.5.2.1. Data Augmentation 
To improve the training data and maximize the effectiveness of the direct seismic 

event localization model, two separate augmentation techniques—Gaussian 
augmentation and augmentation using Generative Adversarial Networks (GANs)—are 
utilized. 

The initial method, Gaussian Augmentation, incorporates synthetic seismic events 
into the training dataset by applying Gaussian noise to the current data. This noise, 
originating from a Gaussian distribution, creates variations that mimic the natural 
variability found in seismic signals. Each row in the dataset is subjected to minor 
alterations to generate new data points. The incorporation of this augmented data into 
the training set strengthens the model's robustness against noise and enhances its 
capacity to generalize to previously unobserved seismic events with varied 
characteristics. 

The second augmentation method utilizes GANs, which consist of a generator and 
a discriminator. The generator creates synthetic seismic events, whereas the 
discriminator is tasked with distinguishing between real and synthetic occurrences. By 
employing adversarial training, the generator enhances its capability to produce 
realistic synthetic seismic events that test the discriminator's skill in distinguishing 
them from genuine occurrences. The produced events are then integrated into the 
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training set, offering a wider array of examples for the model to assimilate. These 
augmentation methods are applied in sequence to produce more resilient synthetic data 
for training purposes. The training dataset size is increased fourfold through data 
augmentation, reaching around 2500 rows. 

 

Figure 48. Data Preparation and Model training process 

6.5.2.2. Building models and hyperparameter tuning 
The training dataset, consisting of the remaining data after random sampling and 

newly generated data, is employed for model training. Following this, the training 
dataset is further divided into testing and training subsets, maintaining a ratio of 75/25. 

XGBoost, Random Forest, and Gradient Boosted Decision Trees models are 
utilized to predict the source location, employing scikit-learn Multiple Output 
Regressor. In the first attempt, these models are executed with default parameters, 
leading to an average error of 7 cm on the training dataset, which is considered 
significant. 

To minimize error, Grid Search cross-validation was employed to optimize the 
hyperparameters of the models. For each model, a variety of pertinent parameters are 
established, followed by the execution of Grid Search cross-validation. Upon 
completion of the tuning process, the Random Forest model demonstrates superior 
performance, achieving an average error of 4cm, representing a 75% reduction 
compared to the default parameter settings. Upon evaluation with the holdout dataset, 
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the error measures approximately 1 cm, presenting a more realistic outcome compared 
to the previous prediction of 0 cm prior to data augmentation. 

 
6.5.3. Experimental results 
[47] developed innovative models for algorithms utilizing neural networks and 

implemented Decision Trees. Furthermore, rather than forecasting a singular velocity 
from aggregated sensor data, velocities were estimated separately for each individual 
sensor. This approach focused on improving the precision of forecasts relative to the 
earlier investigation, while also identifying sensors that may be unreliable. 

                                        (11) 

The Mean Absolute Error (MAE), as presented in Equation (13), was selected as 
the performance metric to evaluate the accuracy of our models. The optimal iteration 
of each algorithm was chosen, and their performances are documented in Table 13. The 
findings presented by [47] indicate that the peak accuracy achieved was 34.770 m/s. 
Nonetheless, the findings yielded significantly improved outcomes, with the peak 
accuracy achieving 7.146 m/s for sensor 2. After analyzing a comprehensive set of 
records, an average velocity of 1615.386 m/s was determined. This average acts as a 
pivotal value, offering a broad estimate of the velocities recorded in this scenario. 

Table 13.  
Model Performance 

Model Unit #2 #3 #4 #5 #6 #7 #8 
Linear 
Regression 

[m/s] 618.25 591.09 624.4 478.43 628.08 674.04 673.1 

DNN 6 
128 

[m/s] 22.02 20.46 29.46 42.99 26.95 27.88 21.39 

GBDT [m/s] 9.74 7.15 13.5 7.32 7.97 10.25 12.33 
 

  

Figure 49. Training and validation losses of the models 
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Recognizing that one metric alone may not fully represent the entire distribution or 
account for potential outliers, it remains an important reference point for evaluating the 
model's inaccuracies. The observed discrepancies in the models, when considering the 
average velocity, are relatively modest, suggesting a favorable alignment with this 
central benchmark. As a result, these findings bolster the assertion that the models 
exhibit notable accuracy in predicting velocities. 

Following this, the simplex method was employed for validation purposes. 
Nonetheless, even slight disturbances can make the system of equations impossible to 
solve because of fundamental inconsistencies. To address this challenge, a least squares 
approximation was utilized to ascertain the coordinates. Nonetheless, as shown in Table 
12, the Mean Absolute Error (MAE) for each coordinate is considerable, frequently 
exceeding the actual values. 

 
 
6.6. Summary  
 
This chapter discusses the application of machine learning to forecast seismic wave 

velocities based on data produced under defined discrete block conditions. The data 
was utilized as input for an algorithm designed to locate seismic sources, with the 
objective of identifying their positions. Among the evaluated machine learning models, 
the Random Forest approach stood out as the most precise predictive model, 
demonstrating a remarkably low error margin of only 1mm. A range of machine 
learning models, encompassing deep learning methods, were utilized on the data 
produced under different block conditions to determine the most effective model. The 
objective of the model was to forecast a corresponding ground condition velocity based 
on a specified set of parameters. Among the tested ML models, the Gradient Boosted 
Decision Tree model stood out with an error rate of 7.15 m/s, compared to the average 
target velocity of 1615.39 m/s. The accuracy attained in forecasting velocity in a 
dynamic mining environment greatly improves the precision in pinpointing the source 
locations of seismic events. The study also resulted in the creation of an algorithm 
utilizing the simplex method. This algorithm, based on the principle of least squares 
approximation, determines the x, y, and z coordinates within a three-dimensional space. 
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7. CONCLUSIONS AND RECOMMENDATIONS 
 
7.1. Conclusions  
 
The objective of the thesis was to forecast the optimal velocity model in real-time 

for application in seismic source location computations within seismic monitoring 
systems. The aim was driven by the challenge of accurately forecasting the specific site 
of rockburst events. The literature review indicated that a major source of uncertainty 
impacting source location accuracy is found in the velocity model employed in the 
location algorithm. Creating a dependable velocity model in mining presents 
significant challenges, primarily due to the presence of various rock types and the 
ongoing fluctuations in rock mass conditions caused by the formation of voids and 
changes in stress. The intricacy of this situation requires an ever-evolving velocity 
model, which stands in stark contrast to the prevailing assumptions that rely on either 
a single homogeneous rock mass model or variable static constant velocity models 
based on layered rock formations in seismic monitoring systems for determining 
seismic source locations. 

The study comprised three primary phases. The initial phase involved replicating 
the conditions of an underground mine within a regulated laboratory setting. The study 
utilized innovative discrete physical models as analogues to depict various stages in 
the mining process, encompassing aspects such as advancing mine maturity, enhanced 
mine extraction, and the fracturing induced by mining activities. AE tests were 
conducted on each discrete block under different conditions to evaluate how each 
condition influences seismic wave velocity. The findings indicated that in isotropic 
homogeneous blocks, the size effect had a minimal impact on seismic wave velocity. 
The impact of void and backfill on the travel time of AE signals is minimal in small 
150 mm blocks. As block size and void diameter increase, along with the presence of 
backfill in the voids, the travel time of signals to sensors lengthens, resulting in a 
decrease in seismic wave velocity. The presence of a fracture resulted in signal 
attenuation that varied based on the sensors' positioning in relation to both the crack 
and the source. The RMR system developed by Bieniawski in 1973 was adjusted to 
accommodate laboratory samples.  

The subsequent phase involved examining the responsiveness of seismic wave 
velocity to different variables within underground mining settings through dynamic 
modeling in FLAC3D. The modeling results indicated that voids affect seismic waves, 
demonstrating heightened attenuation with the introduction of voids. Furthermore, the 
velocity of seismic waves is influenced by the properties of materials, particularly 
variations in density and elastic characteristics. The relationship between higher 
material density and enhanced elastic parameters leads to an increase in seismic wave 
velocity, providing valuable insights for predicting occurrences such as rockbursts and 
fluctuations in stress within mining contexts. 

The third step involved the application of machine learning to predict seismic wave 
velocity in real-time, tailored to different underground mine conditions for determining 
the locations of seismic event sources. Among the tested ML models, the Gradient 
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Boosted Decision Tree model stood out with an error rate of 7.15 m/s, compared to the 
average target velocity of 1615.39 m/s. The accuracy attained in forecasting velocity 
in a dynamic mining environment greatly improves the precision of pinpointing the 
source locations of seismic events. Furthermore, the investigation resulted in the 
creation of an algorithm utilizing the Simplex method, which is based on the principle 
of least squares approximation, to compute the x, y, and z coordinates in three-
dimensional space. 

The combination of numerical modeling, laboratory experiments, and advanced 
monitoring in a comprehensive approach improves understanding of seismic activities 
in mining. This thorough understanding, confirmed by a robust alignment between 
experimental and modeled data, not only enhances mining safety and efficiency but 
also highlights the importance of tackling seismic risks in intricate mining projects. 
The investigation establishes a comprehensive framework that takes into account 
stress, energy, and loading systems to predict seismic energy release in mining 
activities. 

This thesis presents findings that offer important insights into the challenges and 
complexities involved in accurately determining the source locations of seismic events 
within dynamic underground mining environments. The creation of a continuously 
evolving velocity model through the use of discrete physical models as analogues 
marks a notable progress in overcoming the shortcomings of existing methodologies. 

 
 
7.2. Recommendations  

 
In light of the results obtained, it is highly advisable to pursue additional efforts to 

connect theoretical advancements with practical application. The emphasis should be 
on incorporating the developed velocity model into microseismic monitoring systems 
utilized in underground mines, facilitating real-time velocity prediction in conjunction 
with the simplex method. This implementation aims to assess the effectiveness of the 
continuously changing velocity model in practical applications and enhance the 
advancement of seismic monitoring techniques within the mining sector.  

A crucial element that could enhance future studies, yet was neglected by the author 
because of time limitations, is the influence of confined stress on seismic wave velocity. 
The investigation was conducted based on the premise of a direct ray trajectory. 
Nonetheless, this aspect warrants further investigation to achieve a thorough 
comprehension of the wave travel path by utilizing ray tracing theory. 
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