АННОТАЦИЯ

диссертации на соискание степени доктора философии (PhD) по специальности 6D070700 – Горное дело

Зейтинова Шолпан Бекжигитовна

Научно-методические основы заложения шахтного ствола при комбинированной разработке рудных месторождений

Актуальность работы. Развитие горнорудной промышленности в Республике Казахстан в последние годы сопровождается вводом эксплуатацию новых подземных горизонтов для многих действующих месторождений полезных ископаемых, разработка которых первоначально начиналась открытым способом. С увеличением глубины открытых горных работ объем вскрыши резко увеличивается и открытая разработка становится нерентабельной, так как дальнейшая добыча полезных ископаемых требует выполнения значительного объема горно-капитальных и подготовительных работ. По этой причине на территории республики ряд крупных рудных месторождений («Нурказган», «Кентобе», «Саяк», «Акжал», «Ушкатын-3» и др.) стали осуществлять переход с открытого способа на подземную ископаемых, разработку полезных TO есть К открыто-подземному комбинированному способу (комбинированной разработки).

При переходе с открытого способа разработки на подземный на первой же стадии возникает проблема с решением задач, связанных со вскрытием подземной части месторождения – это в первую очередь, выбор схемы вскрытия, типа главной вскрывающей выработки и безопасного места его расположения. Комбинированная разработка являясь относительно новым направлением в горном деле, содержит в себе в плане малоизученности которые требуют необходимости аспекты, специальных исследований. Рассматриваемая в работе проблема правильного выбора безопасного места заложения вскрывающей выработки в условиях комбинированной разработки, в частности вертикальных стволов, с расчетом их устойчивости с позиций усложненной геомеханики является как раз этой малоисследованной областью. Решение этой задачи влияет на эффективность вскрытия и подготовки подземной части месторождения и в целом на весь процесс полной отработки месторождения.

С увеличением глубины отработки полезных ископаемых решение геомеханических задач, влияющих на проблему выбора места заложения шахтных стволов и расчета их устойчивости в условиях комбинированной разработки и неопределенного геомеханического состояния массива, возникающего под влиянием и подземных, и открытых горных работ становится важной научно-технической задачей, влияющей на дальнейшее развитие процесса полной отработки всего месторождения. Существующие методики определения факторов влияющих на выбор и обоснование места

расположения и расчета устойчивости вертикальных выработок вряд ли могут обеспечить достоверный результат из-за того, что в них привязка выработок осуществлялась к условиям чисто подземной выемки в условиях ранее незатронутого массива.

В целом при проектировании рудника (шахты) правильность выбора места заложения ствола связана с тем, что от этого зависит, во-первых, транспортных выработок, суммарная длина И вентиляционных следовательно, затраты на их проведение и поддержание, а во-вторых, суммарный путь подземного грузопотока и вентиляции, следовательно, расходы на транспортирование грузов, проветривание горных выработок, полезного ископаемого (причины потери). При месторождений комбинированным способом приконтурная часть массива подвергается многократному воздействию нагрузок одновременно открытых и подземных работ. Такой способ разработки приводит к осложнению состояния массива под влиянием различных факторов, которые постоянно развиваются в пространстве и во времени.

В связи с этим, задача выбора места заложения шахтных стволов и оценка геомеханического состояния массива горных пород вблизи них при комбинированном (подземно-открытом) способе отработки рудных тел является важной и актуальной проблемой как для исследователей, так для производственников.

Целью работы является обоснование безопасного места заложения шахтного ствола на основе изучения закономерностей влияния прикарьерного массива горных пород при комбинированной разработке рудного месторождения.

Идея работы заключается в выборе безопасного места заложения шахтного ствола в условиях комбинированной разработки рудного месторождения на основе изучения напряженно-деформированного состояния массива в его окрестности с учетом нового фактора техногенного воздействия — открытого карьерного пространства.

Основные задачи исследований:

- обзор и анализ современного состояния вопроса вскрытия месторождений вертикальными стволами в мировой практике в условиях перехода с открытой разработки месторождений на подземный;
- проведение систематизации и разработка новой уточненной классификации способов вскрытия подкарьерных запасов при комбинированной разработки;
- выявление особенностей инженерных и геомеханических задач при комбинированной разработке месторождений, вскрываемых вертикальными шахтными стволами;
- научно-экспериментальные исследования по определению величин отстояния вертикальных шахтных стволов от верхней бровки борта карьера;
- численное моделирование напряженно-деформированного состояния массива в зонах расположения вертикальных стволов, с учетом параметров карьера, глубины разработки, физико-механических свойств горных пород и

– разработка обощенной методики выбора местоположения вертикальных шахтных стволов при комбинированной разработке месторождений.

Методы исследований. Для решения поставленных задач диссертации применен комплексный метод исследований, включающий анализ и обзор состояния вопроса вскрытия месторождений вертикальными стволами в условиях перехода с открытой разработки месторождений на подземный, научно-экспериментальные исследования в производственных напряженно-деформированного условиях, численное моделирование анализ результатов моделирования, использование состояния массива, компьютерных программ.

Научные положения, выносимые на защиту:

- 1. Область безопасного местоположения вертикального шахтного ствола при комбинированной разработке с учетом влияния нового фактора техногенного воздействия открытого карьерного пространства определяется на основе оценки устойчивости бортов карьера и процессов сдвижения горных пород в приконтактной зоне карьера.
- 2. Математическое моделирование напряженно-деформированного состояния прикарьерного массива в зоне расположения вертикальных стволов позволяет оценить характер напряжений от конструктивных параметров карьера, глубины разработки, физико-механических свойств горных пород и формы карьера.

Научная новизна работы:

- классификация способов подземного вскрытия при комбинированной разработке месторождений;
- математическая модель напряженно-деформированного состояния массива вблизи вертикальных выработок для условий комбинированной разработки месторождений с использованием метода конечных элементов;
- установленные зависимости изменения значений напряжений вокруг вертикального ствола от глубины расположения исследуемых точек, глубины карьера, расстояния от верхней бровки борта карьера до ствола;
- обобщенная методика выбора рационального места расположения вертикальных шахтных стволов при комбинированной разработке месторождений.

Практическая значимость работы заключается:

- 1. В разработке методических положений и требований по выбору местоположения вертикальных шахтных стволов при комбинированной разработке месторождений;
- 2. Классификация способов подземного вскрытия при комбинированных способах разработки месторождений, позволяющая систематизировать научно-методические принципы и критерии установления области безопасного места заложения вертикальных стволов в условиях открыто-подземной разработки месторождений.
 - 3. Методические положения по выбору безопасного отстояния

(местоположения) вертикального шахтного ствола от верхней бровки карьера, основанная на оценке устойчивости бортов карьера и процессов сдвижения горных пород в приконтактной зоне карьера.

- 4. Математическая модель напряженно-деформированного состояния массива вблизи вертикальных выработок при комбинированной разработке месторождений с использованием метода конечных элементов.
- 5. Обобщенная методика выбора рационального местоположения вертикального шахтного ствола в условиях комбинированной разработки месторождений.

Достоверность и обоснованность научных положений, результатов и выводов подтверждаются комплексом выполненных научно-исследовательских работ, проведенных в условиях Жайремского ГОК; результатами численного моделирования напряженно-деформированного состояния массива вблизи вертикальных выработок при комбинированной разработке месторождений, показатели физико-механических свойств горных пород у которого аналогичны условиям месторождения «Акжал».

Апробация работы и публикации. Основные положения работы докладывались и получили одобрение на научных семинарах кафедры «Разработка месторождений полезных ископаемых» НАО «Карагандинский университет»; на Международных научно-практических конференциях «Интеграция науки, образования и производства – основа реализации Плана нации» (Караганда: КарГТУ, 2015-2018, 2020); Materials of the XII international scientific and practical conference. Scientific horizons (2016). Отдельные положения диссертации были выполнены в рамках научно-№AP05135203 исследовательских госбюджетных «Разработка тем: интеллектуальных информационных систем для расчета технологических параметров процессов горного производства» (грантовое финансирование научных исследований МОН РК на 2018-2010 гг.).

Результаты научных исследований внедрены в учебный процесс по профильным дисциплинам специальности «Горное дело» и в обобщенной методике выбора рационального места заложения шахтного вертикального ствола при комбинированной разработке месторождений, согласованной Генеральным директором ТОО «Nova-Цинк» и утвержденной исполнительным директором НАО «КарТУ».

Основные положения и результаты выполненных исследований изложены в 13 печатных трудах, в том числе 4 опубликованы в изданиях, рекомендованных Комитетом по обеспечению качества в сфере образования и науки МОН РК; 2 опубликованы в международном издании, входящем в базу данных компании Scopus.

Структура и объем диссертационной работы. Диссертационная работа состоит из введения, 4 разделов и выводов, изложенных на 133 страниц печатного текста, содержит 93 рисунков, 9 таблиц, списка использованных источников из 89 наименований и 6 приложений на 32 страницах.

консультанту д.т.н., проф. Исабек Т.К. и зарубежному научному консультанту д.т.н., проф. К. Дребенштедту, а также профессорско-преподавательскому составу кафедры РМПИ за поддержку и оказание помощи при выполнении научной работы.